摘要
探讨了目标运动分析(Target moving analysis,TMA)中基本的非线性估计问题,介绍了基于UT的UKF算法的设计思想与具体实现,特别针对空对海单站无源到达时间TMA(TO-TMA)问题应用UKF和EKF进行了对照研究,建立了问题的离散非线性滤波估计模型,设计了典型的应用场景,给出了Monte Carlo仿真运行结果;表明UKF在该特定应用背景下,由于模型的非线性较弱,使得UKF在精度上与EKF相当,而且在运算量上也有所增加。
Compared with the extended kalman(EKF) algorithm, unscented kalman filtering filtering(UKF) algorithm is used to solve the problems of the target moving analysis (TMA) based on time-of-arrival measurements(TO-TMA). Firstly, the nonlinear filtering problem is identified in the groundwork embedded in TMA. The UT and UKF including their design consideration and specific algorithm are then introduced . Particular attention is paid to the problem of single observer passive air-to-sea TO-TMA. The discrete-time models are formulated as to the nonlinear filtering problem and a typical scenario is depicted. The results of Monte Carlo simulations have demonstrated that the UKF performs nearly the same as the EKF does in accuracy for the above special background with weak nonlinearity.
出处
《数据采集与处理》
CSCD
北大核心
2009年第B10期49-53,共5页
Journal of Data Acquisition and Processing
基金
国家自然科学基金(60702015)资助项目
中国博士后科学基金(20070420740)资助项目
关键词
目标运动分析
递推非线性滤波
扩展卡尔曼滤波
无味变换
无味卡尔曼滤波
target moving analysis
recursive nonlinear filtering
extended Kalman filtering (EKF)
unscented transformation
unscented Kalman filtering(UKF)