期刊文献+

UKF与EKF在空对海单站TO-TMA中的应用 被引量:1

Application of Air-to-Sea Time-of-Arrival Only TMA Based on UKF and EKF Algorithms
下载PDF
导出
摘要 探讨了目标运动分析(Target moving analysis,TMA)中基本的非线性估计问题,介绍了基于UT的UKF算法的设计思想与具体实现,特别针对空对海单站无源到达时间TMA(TO-TMA)问题应用UKF和EKF进行了对照研究,建立了问题的离散非线性滤波估计模型,设计了典型的应用场景,给出了Monte Carlo仿真运行结果;表明UKF在该特定应用背景下,由于模型的非线性较弱,使得UKF在精度上与EKF相当,而且在运算量上也有所增加。 Compared with the extended kalman(EKF) algorithm, unscented kalman filtering filtering(UKF) algorithm is used to solve the problems of the target moving analysis (TMA) based on time-of-arrival measurements(TO-TMA). Firstly, the nonlinear filtering problem is identified in the groundwork embedded in TMA. The UT and UKF including their design consideration and specific algorithm are then introduced . Particular attention is paid to the problem of single observer passive air-to-sea TO-TMA. The discrete-time models are formulated as to the nonlinear filtering problem and a typical scenario is depicted. The results of Monte Carlo simulations have demonstrated that the UKF performs nearly the same as the EKF does in accuracy for the above special background with weak nonlinearity.
作者 程水英
出处 《数据采集与处理》 CSCD 北大核心 2009年第B10期49-53,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60702015)资助项目 中国博士后科学基金(20070420740)资助项目
关键词 目标运动分析 递推非线性滤波 扩展卡尔曼滤波 无味变换 无味卡尔曼滤波 target moving analysis recursive nonlinear filtering extended Kalman filtering (EKF) unscented transformation unscented Kalman filtering(UKF)
  • 相关文献

参考文献8

  • 1Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with applications to tracking and navigation: theory, algorithms, and software [M]. New York: John Wiley & Sons, 2001:373-374,381-395,109-112,123- 129,268-275.
  • 2Kushner H J. On the differential equations satisfied by conditional probability densities of Markov processes, with applications[J]. J SIAM on Control, 1964, 2: 106-119.
  • 3Kay S M, Fundamentals of statistical signal processing: estimation theory[M]. NJ: Prentice Hall, 1993: 449-452, 27-81, 379-418.
  • 4Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc IEEE, 2004, 92(3): 401-422.
  • 5Lefebvre T, Bruyninckx H, De Schutter J. Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators"[J]. IEEE Trans Automat Contr, 2002, 47 (8): 1406-1408.
  • 6Van der Merwe R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models [D]. Portland: Oregon Health Sci Univ, 2004.
  • 7程水英.无味变换与无味卡尔曼滤波[J].计算机工程与应用,2008,44(24):25-35. 被引量:27
  • 8Li X R, Jilkov V P. Survey of maneuvering target tracking, part I: dynamic models[J]. IEEE Trans Aerospace and Electronic Systems, 2003, 39 (4): 1333-1364.

二级参考文献12

共引文献26

同被引文献11

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部