期刊文献+

基于PEG算法的准循环LDPC码的编码构造方法 被引量:5

PEG-Based Construction Method for Quasi-Cyclic LDPC
下载PDF
导出
摘要 为了将渐进添边(Progressive edge-growth,PEG)算法应用于准循环低密度校验码(Low density parity-check codes,LDPC codes)的构造,本文从最小化环长和减少短环周期的角度,提出一种新颖的准循环LDPC码的编码构造方法。利用该方法构造出一个码率为1/2的LDPC码,并通过计算机仿真得到其误帧率曲线,其性能优于3GPP中相同码长码率的Turbo码。该LDPC码不仅性能优异,而且编译码方法简单、复杂度低,能够节省存储空间,适用于未来移动通信以及深空通信。 In order to apply progressive edge-growth (PEG) algorithm to the construction of quasi-cyclic low density parity-check (LDPC) codes, a new construction method for quasi-cyclic LDPC codes is proposed by minimizing the girth and reducing the short ring cycle. By the method, a 1/2-rate LDPC code is constructed and its frame error ratio (FER) curve is obtained by numerical simulations. It is demonstrated that it outperforms the Turbo code in 3GPP specifications. Moreover, with low complexity and small storage space, the code is easy for encoding and decoding. Thus it is applicable to future mobile communications and deep-space communications.
出处 《数据采集与处理》 CSCD 北大核心 2009年第B10期182-186,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60702050)资助项目 教育部科学技术研究(109013)资助项目 国家重大专项IMT-Ad-vanced开放性关键技术研究资助项目
关键词 低密度校验码 准循环 PEG算法 偏移量 low density parity-check (LDPC)codes quasi-cyclic progressive edge-growth (PEG) algorithm offset
  • 相关文献

参考文献6

  • 1Gallager R G. Low density parity check codes[J]. IRE Trans Info Theory, 1962,IT-8 : 21-28.
  • 2MacKay. Good error correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, 1999,IT-45 : 399-431.
  • 3Luby M G, Mitzenmacher M, Shokrollahi M A, et al. Improved low-density parity-check codes using irregular graphs and belief propagation [C]//ISIT 1998. Cambridge, MA, USA:[s.n.], 1998.
  • 4Hu Xiaoyu, Eleftheriou E, Arnold D M. Regular and irregular progressive edge-growth tanner graphs [J]. IEEE Transactions on Information Theory, 2005,51 (1) : 386-398.
  • 5吴湛击,王文博.现代信道编码与调制-理论与应用[M].北京:人民邮电出版社,2008:232-236.
  • 6Wu Zhanji, Peng Mugen, Wang Wenbo. Efficient difference-based decoding implementations of LDPC codes[J]. IEEE Communication Letter, 2008, 12 (5):383-385.

同被引文献44

  • 1郑贺,陆佩忠,胡捍英.基于二分图的乘积码迭代译码算法[J].电子与信息学报,2006,28(1):86-91. 被引量:2
  • 2Lentmaier M, Zigangirov K S. On generalized low- density parity check codes based on Hamming com- ponent codes [J]. IEEE Communications Letter, 1999, 3(8): 248-250.
  • 3Boutros J, Pothier O, Zkmort G. Generalized low- density (Tanner) codes[C] ,// Proceeding IEEE ICC. Vancouver: Curran Associates Inc., 1999: 441-445.
  • 4Chilappagari S K, Nguyen D V, Vasic B, et al. On trapping sets and guaranteed error correction capabili- ty o[ LDPC codes and GLDPC codes [J]. IEEE Transactions on Information Theory, 2010, 56 (4) .. 1600-1611.
  • 5Bocharova I E, Hug F, Johannesson R, et al. Doub- le-Hamming based QC LDPC codes with large mini- mum distance[C] // 2011 IEEE International Sympo- sium on Information Theory Proceedings. Saint-Pe- tersburg IEEE Express Conference Publishing, 2011: 923-927.
  • 6Yue Guosen, Ping Li, Wang Xiaodong. Generalized low-density parity-check codes based on Hadamard constraints[J]. IEEE Transactions on Information Theory, 2007, 53(3).. 1058-1079.
  • 7Abu-Surra S, Divsalar D, Ryan W E. On the typical minimum distance of generalized LDPC convolutional codes based on protographs[C]//ISIT 2010. Texas.. IEEE Express Conference Publishing, 2010: 709- 713.
  • 8Hu Xiaoy, Eleftheriou E, Arnold D M. Regular and irregular progressive edge-growth Tanner graphs[J]. IEEE Transactions on Information Theory, 2005, 51 (1) : 386-398.
  • 9Lin S, Costello D J. Error control coding[M]. Lan- don.. Prentice Hall, 2007: 711-715.
  • 10Wang Yige, Fossorier M. Doubly generalized LDPC codes over the AWGN channel[J] IEEE Transac- tions on Information Theory, 2009, 57 (5): 1312- 1319.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部