期刊文献+

解偶联剂CCCP调控海洋绿藻Platymonas subcordiformis的光照产氢特征

CHARACTERIZATRION OF PHOTOBIOLOGICAL HYDROGEN PRODUCTION BY MARINE GREEN ALGAE PLATYMONAS SUBCORDIFORMIS UNDER UNCOUPLER CCCP
下载PDF
导出
摘要 研究了不同浓度解偶联剂CCCP对海水绿藻Platymonas subcordiformis光照产氢的影响。研究结果显示:厌氧暗诱导后,PSII光化学活性、光合放氧能力和光照产氢能力与CCCP浓度密切相关;藻液中CCCP浓度超过4μmol·L^(-1)时,藻细胞PSII光化学活性被持续抑制,光合放氧能力明显降低,密闭藻液体系能够保持厌氧状态,进行光照产氢12h以上;光照产氢所需电子的90%来自PSII光解水,10%来自内源底物代谢;随着CCCP浓度增加,其对氢酶活性的抑制作用增强。同时,研究了10μmol/L CCCP对不同pH藻液直接光照产氢的影响。 The effect of different concentration of uncoupler CCCP on the hydrogen production by marine green algae Platyrnonas subcordiformis was investigated. The results show that the PSII photochemical activity, oxygen evolution, and the capacity of hydrogen production are closely related to the concentration of CCCP during light illumination. When the CCCP in culture exceeds 4μmol·L^- 1, PSII photochemical activity is consistently inhibited, resulting in a decline of the rate of photosynthetic oxygen evolution, thus the sealed system maintains an anaerobic condition and photoproduee H2 above 12h. The effects of different electron sources on hydrogen production revealed that about 90% electrons need for hydrogen photoproduction are produced by the water oxidation through PSII absorption of light energy, and the remaining 10% probably are transferred from endogenous substrate degradation. Besides, the effect of CCCP on hydrogen production under direct light illumination was studied.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2009年第10期1341-1346,共6页 Acta Energiae Solaris Sinica
基金 大连民族学院博士启动金(20076106)
关键词 Platymonas subcordiformis 光照 CCCP 产氢 氧抑制 光化学活性 Platymonas subcordiformis light illumination CCCP hydrogen production oxygen inhibition photochemical activity
  • 相关文献

参考文献12

  • 1Gaffron H. Reduction of CO2 with H2 in green plants [ J]. Nature, 1939, 143: 204--205.
  • 2Gaffron H, Rubin J. Fermentative and photochemical production of hydrogen in algae[J]. J Gen Physiol, 1942, 26: 219---240.
  • 3Boichenko V A, Hoffmann P. Photosynthetic hydrogen-production in prokaryotes and eukaryotes: Occurrence, mechanism, and function[J]. Photosynthetica, 1994, 30: 527-- 552.
  • 4Ghirardi M L, Togasaki R K, Seibert M. Oxygen sensitivity of algal H2-production [ J ]. Appl Biochem Biotech, 1997, 63: 141--151.
  • 5Guan Y F, Deng M C, Yu X J, et al. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis[J]. Biochem Eng J, 2004, 19: 69-- 73.
  • 6Ran C Q, Yu X J, Jin M F, et al. Role of carbonyl cyanide m-chlorophenylhydrazone in enhancing photobiological hydrogen production by marine green alga Platymonas subcordiformis[J]. Biotech Prog, 2006, 22: 438--443.
  • 7Melis A, Zhang L P, Forestier M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii [J]. Plant Physiol, 2000, 122: 127--136.
  • 8Renger G, Bouges-Bocquet B, Delosme R. Studies on the ADRY agent-induced mechanism of the discharge of the holes trapped in the photosynthetic watersplitting enzyme system Y [J]. Biochim Biophys Acta, 1973, 292: 796---807.
  • 9Samuilov V D, Barsky E L. Interaction of carbonyl cyanide m-chlorophenylhydrazone with the photosystem (II) acceptor side[J]. FEBS Lett, 1993, 320: 118--120.
  • 10Happe T, Kaminski A. Differential regulation of the Fehydrogenase during anaerobicadaptation in the green alga Chlamydomonas reinhardtii [ J ]. Eur J Biochem, 2002, 269: 1022--1032.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部