摘要
本文在BP神经网络模型中,采用一种新型的神经元活化函数替换传统的S型活化函数,并在活化函数中引入了可调参量,研究表明,作这一替换后对提高网络的学习速度、抑制假饱和现象起到了很好的作用.
In this paper, S type neuron activation function in traditional BP neural networks model is replaced by a new type neuron activation function. Research results shows that this replacement helps accelerate network convergence speed and restrain false saturation.