期刊文献+

基于步态能量图像和2维主成分分析的步态识别方法 被引量:15

Gait Recognition Based on Gait Energy Image and Two Dimensional Principal Component Analysis
下载PDF
导出
摘要 为了快速有效地进行步态识别,针对步态能量图像能够表征步态信息和2维主成分分析能快速降维的特点,提出了一种基于步态能量图像和2维主成分分析的步态识别方法。该方法首先应用背景减除法分割出人体轮廓;然后通过人体宽高比的相关信号确定运动周期,再对二值周期序列进行步态能量图像(GEI)合成;最后运用行列相结合的2维主成分分析((2D)2PCA)方法与加权的2维主成分分析(W(2D)2PCA)方法提取特征主向量,并采用最近邻分类器进行分类。实验结果表明,该步态识别方法可以有效降低前期处理对分类识别的影响,而且对于3种不同行走状态的CASIA数据库中多个视角下拍摄的步态图像可取得很好的识别效果。 In order to carry on the gait recognition fast and effectively, aiming at the characteristics that gait energy image can view the information of gait and two dimension principal component analysis can reduce the dimensions quickly, a novel gait recognition based on gait energy image and two dimension principal component analysis is proposed in this paper. Firstly, the body silhouette extraction is achieved by background subtraction. Secondly, a gait cycle is obtained with the correlated signal of the ratio of width and height of human body. Gait energy image is applied on the binary image sequence to construct the feature vector. Finally, (2D)2PCA and W(2D)2pCA is used to reduce into a low dimension space. The nearest-neighbor classifier is adopted to distinguish the difference. This gait recognition method can decrease the influence of the early preprocess effectively, and our experimental results demonstrate that the method is effective and has achieved a good recognition effect on CASIA gait database including three different multi-views.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第12期2503-2509,共7页 Journal of Image and Graphics
基金 国家高技术研究发展计划(863)项目(2008 AA01 Z 148) 黑龙江省杰出青年科学基金项目(JC200703)
关键词 步态识别 步态能量图像 2维主成分分析 行列相结合的2维主成分分析 加权的2维主成分分析 gait recognition, gait energy image, two dimensional principal component analysis, (2D)2PCA, W (2D)2PCA
  • 相关文献

参考文献14

  • 1王科俊,侯本博.步态识别综述[J].中国图象图形学报,2007,12(7):1152-1160. 被引量:44
  • 2Shutler J D, Nixon M S. Zernike velocity moments for description and recognition of moving shapes [ A ]. In: Proceedings of the British Machine Vision Conference [ C] , Manchester, UK, 2001, II : 705-714.
  • 3Kale A, Rajagopalan A, Cuntoor N, et al. Gait based recognition of humans using continuous HMMs [ A ]. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition[ C ], Washinton, DC, USA, 2002:336-341.
  • 4Wang Liang, Ning Hua-zhong, Hu Wei-ming. Gait recognition based on procrustes shape analysis [ A ]. In: Proceedings of the IEEE International Conference on Image Processing [ C ], Rochester, NY, USA ,2002:433-436.
  • 5王亮,胡卫明,谭铁牛.基于步态的身份识别[J].计算机学报,2003,26(3):353-360. 被引量:158
  • 6Huang P S, Harris C J, Nixon M S. Recognising humans by gait via parametric canonical space [ J ]. Journal of Artificial Intelligence in Engineering, 1999, 13(4) :359-366.
  • 7Hayfron-Acquah J B, Nixon M S. Carter J N. Automatic gait recognition by symmetry analysis [ J ]. Pattern Recognition Letters, 2003, 24(13) :2175-2183.
  • 8Cunado D, Nixon M S, Carter J N. Using gait as a biometric, via phase-weighted magnitude spectra [ A ]. In: Proceedings of the International Conference on Audio and Video Based Biometric Person Authentication[ C] , Crans Montana, Switzerland, 1997 : 95-102.
  • 9Ning Hua-zhong, Tan Tie-niu, Wang Liang,et al. Kinematics based tracking of human walking in monocular video sequences [ J ]. Image and Vision Computing, 2004, 22(5 ) : 429-441.
  • 10刘玉栋,苏开娜,马丽.一种基于模型的步态识别方法[J].计算机工程与应用,2005,41(9):88-92. 被引量:16

二级参考文献138

共引文献228

同被引文献129

引证文献15

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部