期刊文献+

RSOTP子空间学习方法

A Reversible and Stable Orthogonal Tensor Projection Method in Subspace Learning
下载PDF
导出
摘要 为增强张量子空间学习的稳定性、可重现性,及其分类能力,提出了一种鲁棒的子空间学习方法——RSOTP。该方法以MFA为鉴别准则,采用稳定的初始化向量和交替形式的正交来去除了权重因子,从而使整个学习过程不仅具有鲁棒性、可重现性,而且具有较强的分类能力,该方法在大小型人脸数据库上进行的实验均取得了较高的识别率。 In this paper we proposed a MFA based RSOTP subspace learning method. By employing stable discriminant vector in initialization and using an alternative orthogonal selection and throwing off weight matrix, this approach enhances the robustness of the learning process and strengthens the classification ability, and achieves better recognition performance on both large and small face datasets than conventional techniques.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第12期2539-2544,共6页 Journal of Image and Graphics
关键词 张量投影子 空间学习 人脸识别 tensor projection, subspace learning, face recognition
  • 相关文献

参考文献11

  • 1Turk M, Pendand A. Eigenfaces for recognition [ J ] . Journal of Cognitive Neuroscience, 1991, 3(1):71-86.
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using elass specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997, 19(7):711-720.
  • 3He X F, Yah S C, Hu Y, et al. Face recognition using Laplacianfaces [ J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 ( 3 ) :328-340.
  • 4Hua G, Viola P A, Drucker S M. Face recognition using discrJminatively trained orthogonal rank one tensor projections [ A ]. In: Proceedings of IEEE International ConFerence on Computer Vision and Patter Recognition[C], Minneapolis, Minnesota, USA, 2007: 1-8.
  • 5Xu D, Lin S, Yah S C, et al. Rank-one projections with adaptive margins for face recognition [ A] . In: Proceedings of IEEE International Conference on Computer Vision and Patler Recognition[C], New York, USA, 2006, 1:175-181.
  • 6Yan S C, Xu D, Zhang B Y, et al. Graph embedding an extensions: A general framework for dimensionality reduction [J] IEEE Transactions on Pattern Analysis and Machine Intelligence 2007, 29(1) :40-51.
  • 7Kolda T G. Orthogonal tensor decompositions [ J ]. Society for Industrial and Applied Mathematics. Journal on Matrix Analysis and Applications, 2001, 23( 1 ) :243-255.
  • 8He X F, Cai D, Niyogi P. Tensor subspace analysis[A]. In: Proceedings of Advances in Neural Information Processing Systems [ C ] , Cambridge, MA, USA : MIT Press, 2005:499-506.
  • 9Wang H, Yan S C, Tang X O, et al. A convergent solution to tensor based learning [ A ] . In: Proceedings of International Joint Conferences on Artificial Intelligence ( IJCA107 Oral ) [ C ] , Regency, Vancnver, B. C. , Canada, 2007:629-634.
  • 10Samaria F, Harter A. Parameterization of a stochastic model for human face identification[ A ]. In: Proceedings of IEEE Workshop on Applications of Computer Vision [ C ] , Sarasota, FL, USA. 1994 : 138-142.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部