期刊文献+

一种快速多尺度特征点匹配算法 被引量:3

A Fast Multi-scale Feature Matching Algorithm
下载PDF
导出
摘要 为了快速稳定地进行特征点的跟踪,提出了一种快速多尺度特征点的提取算法。该算法首先利用快速局部窗口极值搜索算法提取出不同尺度空间特征点的局部极值,减少了局部极值搜索的冗余性,然后再利用最近邻算法对特征点进行匹配。实验结果表明,该算法的计算速度快于SIFT算法和MOPS算法,稳定性强于传统的Harris算法,可以用于实时图像配准及目标跟踪。 This paper presents a Multi-scale feature extraction algorithm, which computes the maximum of the features in moving windows using fast algorithm reduces the search redundancy and obtains the matching features using the nearest neighbor matching algorithm . The experimental results show that this algorithm is faster than the SIFT and MOPS, and has more stability than Harris algorithm. The algorithm can be used in image registration and target tracking.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第12期2572-2576,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(60874094)
关键词 特征点提取 特征点匹配 多尺度变换 MOPS 尺度不变特征变换Harris角点 feature extraction, feature matching, multi-scale transform, multi-scale oriented patches (MOPS), scale- invariant feature transform(SIFT) , Harris corner
  • 相关文献

参考文献9

  • 1Harris C G, Stephens M J. A combined corner and edge detector [ A ]. In: Proceedings Fourth Alvey Vision Conference [ C ], Manchester, UK, 1988:147-151.
  • 2Schmid C, Mohr R. Local grayvalue invariants for image retrieval [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(5) :530-535.
  • 3Lowe D. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.
  • 4Brown M, Szeliski R, Winder S. Multi-image matching using multi- scale oriented patches [ A ] . In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern[ C], San Diego, CA, USA, 2005: 510-517.
  • 5Van Herk M, A fast algorithm for local minimum and maximum filters oft rectangular and octagonal kernels [ J ]. Pattern Recognition Letters, 1992, 13(7):517-521.
  • 6Joseph G, Michael W. Efficient dilation, erosion, opening, and closing algorithms[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 (5) :504-507.
  • 7Gil J Y, Kimmel R. Efficient dilation,erosion, opening, and closing algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 ( 12 ) : 1606-1617.
  • 8Arya S, Mount D M, Netanyahu N S, et al. An optimal algorithm for approximate nearest neighbor searching[ J]. Journal of ACM, 1998, 45(6) :891-923.
  • 9Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24 (6): 381-395.

同被引文献32

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部