期刊文献+

一种改进的Log-Gabor滤波和SVM的虹膜识别方法 被引量:2

An Improved Iris Recognition Algorithm Based on Log-Gabor Filter and SVM
下载PDF
导出
摘要 特征提取和分类是虹膜识别中的关键部分。由于小波分解后的低频子带包含了虹膜图像的主要信息,而Log-Gabor滤波能有效地提取出图像的纹理信息,将这两种方法结合是一个提取虹膜识别信息的有效途径。本文先对归一化的虹膜采用小波变换的方法细分图像,再用Log-Gabor滤波器对低频通道的子带图像进行更进一步的特征提取并量化,形成特征码本,最后采用支持向量机的分类器来进行分类。实验结果表明,分类器能很好地分离各类虹膜,识别率提高到了99.6%,等错率则降低为0.3%,比传统汉明距的分类方式有更优异的性能。 Feature extraction and classification is very important in the iris recognition. The low frequency sub-image of the wavelet transform contains the primary information of the iris, and the Log-Gabor filter can effectively extract the iris texture information. The combination of these two approaches is an effective way to extract the iris texture. This paper firstly decomposes the normalized iris image by the wavelet transformation to obtain the sub-images, and then uses a Log-Gabor filter to extract the features of the low frequency sub-image and generates the iris code. Finally support vector machines (SVM) is used to classify. The experiments results show the SVM can achieve good effect on the iris classification. The recognition rate is up to 99.6% and the equal error rate is reduced to 0. 3% . Compared with the hamming distance, the SVM has the better performance.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第12期2603-2606,共4页 Journal of Image and Graphics
关键词 虹膜识别 小波变换 Log—Gabor滤波 支持向量机 iris recognition, wavelet transform, Log-Gabor filter, SVM
  • 相关文献

参考文献9

  • 1Daugman J G. High confidence visual recognition of person by a test of statistical independence [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15( 11 ) :1148-1161.
  • 2Daugman J. How iris recognition works [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2004,14( 1 ) :21-30.
  • 3Masek L. Recognition of human iris patterns for biometric identification [ D]. Perth,Australia: The University of Western Australia, 2003.
  • 4Lim S, Lee K, Byeon O, et al. Efficient iris recognition through improvement of feature vector and classifier[J]. ETRI Journal, 2001, 23(2) :61-70.
  • 5Son B, Kee G, Byun Y, et al. Iris recognition system using wavelet packet and support vector machines [ A ]. In: Proceeding of International Workshop on Information Security Applications [ C ], Jeju, Korea, 2003, 2908:1915-1932.
  • 6Roy K, Bhattacharya P. Iris recognition with support vector machine [ A]. In: Proceeding of IAPR International Conference on Biometric Authentication (ICBA) [ C ] , Hong Kong, 2006, 3882:486-492.
  • 7All H, Salami M J E, Wahyudi. Iris recognition system by using support vector machines [ A ] . In: Proceedings of the International Conference on Computer and Communication Engineering[ C], Kuala Lumpur, Malaysia, 2008:516-521.
  • 8Daugman J G. Statistical richness of visual phase information: update on recognition persons by iris patterns [ J ]. International Journal of Computer Vision, 2001,45 ( 1 ) :25-38.
  • 9李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98

二级参考文献6

共引文献97

同被引文献28

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部