期刊文献+

浅曲梁大挠度分析的余能有限元方法

Finite element method based on complementary energy principle for large deflection of shallow beam
下载PDF
导出
摘要 以高玉臣提出的弹性大变形余能原理为基础,利用Lagrange乘子,放松平衡方程和力边界条件对余能泛函的约束,推导出广义的余能原理。根据极分解定理,将变形分为刚性转动和纯变形两部分,则余能也包含相应的两部分,一部分与刚性转动有关,而另一部分与纯变形有关。使用线弹性本构关系,建立了可用于几何非线性计算的有限元模型。应用更新的Lagrange列式法,给出了增量形式的有限元公式。数值计算结果表明,该方法可用于浅曲梁的几何大变形计算。 Based on the complementary energy principle for large elasticity proposed by Gao Yuchen, the generalized complementary energy principle (GCEP) was deduced when the constraints of equilibrium equations and force boundary conditions were released by the Lagrange multiplier method. According to the polar decomposition theorem, the deformation could be decomposed into two parts of rigid rotation part and pure deformation part, and then the complementary energy also included two parts in which one part was related to rigid rotation while the other was related to pure deformation. Using the linear elastic constitutive relation, the finite element model that could be used to geometrical nonlinear problem was established. With the update Lagrange method, the incremental finite element formulas were obtained. The numerical results show that the FEM based on GCEP can be used to geometrical nonlinear computation for shallow beam.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第6期792-796,共5页 Chinese Journal of Computational Mechanics
基金 教育部博士点资金(20030004003)资助项目
关键词 余能原理 基面力 有限元 浅曲梁 几何非线性 complementary energy principle base forces finite element method shallow beam geometrical nonlinear
  • 相关文献

参考文献7

  • 1FUNG Y C,KAPLAN A. Buckling of low arches and curved beams of small curvature. NACA TN2840, 1952.
  • 2卞学璜.有限元法论文选[M].北京:国防工业出版社,1980.
  • 3叶榕 刘正兴.浅曲梁大变形分析的杂交应力法.上海力学,1987,3:43-54.
  • 4SABIR A B, LOCK A C. Large deformation, geometrically non-linear finite element analysis of circular arches[J]. International Journal of Mechanics and Science, 1973,15:37-47.
  • 5PI Y L, TRAHAIR N S. Nonlinear buckling and postbuckling of elastic arches [J]. Engineering Structures, 1998,20(7) :571-579.
  • 6GAO Yuchen.Complementary energy principle for large elastic deformation[J].Science China(Physics,Mechanics & Astronomy),2006,49(3):341-356. 被引量:5
  • 7GAO Y C. A new description of the stress state at a point with application[J]. Archive of Applied Mechanics, 2003,73 : 171-183.

二级参考文献17

  • 1[1]Hellinger E.Der allgemein Ansatz der Machanik der Kontinua.Encyclopqdia der Mathematischen Wissenschaften,1914,4:602
  • 2[2]Reissner E.On a variational theorem for finite elastic deformation.J Math Phys,1953,32:129-135
  • 3[3]Levinson M.The complementary energy theorem in finite elasticity.J Appl Mech,1965,32:826-828
  • 4[4]Washizu K.Variational Methods in Elasticity and Plasticity.Oxford:Pergamon press,1968
  • 5[5]Zubov L M.The stationary principle of complementary work in nonlinear theory of elasticity.Prikl Mat Mech,1970,34:228-232
  • 6[6]Koiter W T.On the principle of stationary complementary energy in the nonlinear theory of elasticity.SIAM J Appl Math,1973,25:424-434
  • 7[7]Ogden R W.A note on variational theorems in non-linear elastostatics.Math Proc Camb Philos Soc,1975,77:609-615
  • 8[8]Ogden R W.Inequalities associated with the inversion of elastic stress deformation relation and their implications.Math Proc Camb Philos Soc,1977,81:313-324
  • 9[9]Guo Z H.Non-linear Theory of Elasticity (in Chinese).Beijing:Science Press,1980.218-240
  • 10[10]Atluri S N.On some new general and complementary energy theorems for the rate problems in finite strain,classical elasticity.J Struct Mech,1980,8:62-91

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部