期刊文献+

无限大基体中双圆形夹杂的应力干涉问题研究 被引量:1

Researches on interacting double circular inclusions in an infinite matrix
下载PDF
导出
摘要 建立了一种新型圆形夹杂单元,用于考察y向拉伸情况下无限大板中双圆形夹杂互相干涉问题,分析材质、位置关系与间距等对夹杂应力场的影响。算例考虑了两夹杂连线与x轴的夹角12分别为0°,45°和90°三种情况,计算结果表明:(1)该模型能够用较少的单元数获得令人满意的计算结果,尤其适用于多夹杂的应力分析;(2)夹杂/基体刚度比k不同时,夹杂/基体界面上的周向应力的最大值与最小值的出现位置差异可能很大;(3)两夹杂的距离越近,夹杂之间基体的正应力σy会急剧上升或下降,具体变化趋势取决于k和21;(4)特定21的情况下,夹杂/基体刚度比k使夹杂之间基体的正应力σy单调变化。 A super element with an inclusion in conjunction with conventional hybrid elements is presented for the analysis of interacting double circle inclusions in an infinite plane matrix. In numerical examples, double inclusions with inclination angle φ12 =0°, 45° and 90° are considered, and the influences of material properties, inclination positions and center distances on the local stresses of matrix are investigated. According to the numerical results, it is found that. (1) The present hybrid element method yields satisfactory results with less elements, thus it is meaningful for stress analysis of the micromechanical analysis of heterogeneous materials with randomly distributed circular inclusions; (2) Position angles where peak hoop stresses appear at change with stiffness ratios of inclusions and matrix; (3) With different values of k and φ12, the normal stresses σy in the matrix between two inclusions may increase or decrease rapidly with the shortening of center distances of the two inclusions; 4) With different values of inclination angles, normal stresses σy in the matrix between two inclusions change monotonously with stiffness ratios of inclusions and matrix.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第6期882-885,共4页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金资助(10362002 10662004) 江西省自然科学基金资助(2007GZW0862) 载运工具与装备省部共建教育部重点实验室开放基金资助项目
关键词 夹杂 杂交有限元 刚性 孔洞 干涉 inclusion hybrid element rigid hole interaction
  • 相关文献

参考文献13

  • 1刘又文,杨班权.含刚性椭圆夹杂的弹性平面奇异解[J].力学与实践,2000,22(5):39-41. 被引量:1
  • 2郭磊,聂国华,Chan Cheong-ki.横观各向同性介质中椭圆夹杂受非弹性剪切变形引起的弹性场的确定[J].力学季刊,2005,26(4):599-603. 被引量:1
  • 3RU C Q. Analytic solution for Eshelby's problem of an inclusion of arbitrary shape in a plane or half-plane [J]. ASME J Appl Mech, 1999,66 : 315-322.
  • 4WANG X, SHEN Y P. Two circular inclusions with inhomogeneous interfaces interacting with a circular Eshelby inclusion in anti-plane shear[JJ. Acta Mechanica, 2002,158 : 67-84.
  • 5仲政.压电材料椭圆夹杂界面局部脱粘问题的分析[J].应用数学和力学,2004,25(4):405-416. 被引量:5
  • 6ZOU Z, LI S. Stresses in an infinite medium with two similar circular cylindrical inclusions [J]. Acta Mechanica, 2002,156 : 93-108.
  • 7HORII H, NASSER N. Elastic fields of interacting inhomogeneities[J]. Int J Solids Structures, 1985,21(7):731-745.
  • 8NODA N A, MORIYAMA Y. Stress concentration of an ellipsoidal inclusion of revolution in a semi-infinite body under biaxial tension[J]. Arch Appl Mech, 2004,74:29-44.
  • 9YAO Z H, KONG F Z, WANG P B. Simulation of 2D elastic solids with randomly distributed inclusions by boundary element method[A]. Proceeding of Fifth World Congress on Computational Mechanics [C]. Vienna, Austria: July 7-12, 2002.
  • 10LEE KY, KWAK S G. Determination of stress intensity factors for bimaterial interface stationary rigid line inclusions by boundary element method[J]. Int J Fract, 2002,113 : 285-294.

二级参考文献22

共引文献9

同被引文献12

  • 1陈勇,宋迎东,高德平,范绪箕.热、机械载荷作用下夹杂对应力强度因子的影响[J].计算力学学报,2005,22(6):776-779. 被引量:8
  • 2林智育,许希武.含任意椭圆核各向异性板杂交应力有限元[J].固体力学学报,2006,27(2):181-185. 被引量:8
  • 3Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems [A]. Proceeding of Royal Society of London, Series A[C], 1957,241(1226) :376-396.
  • 4Wang B. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material[J]. International Journal of Solids and Structures, 1992,29 (3) 293- 308.
  • 5Kusheh V I, Shmegera S V, Buryachenko V A. Interacting elliptic inclusions by the method of complex potentials[J]. International Journal of Solids and Structures ,2005,42(20) :5491-5512.
  • 6Yao Z H, Kong F Z, Wang P B. Simulation of 2D elastic solids with randomly distributed inclusions by boundary element method [A]. Proceeding of the Fifth World Congress on Computational Mechanics [C], Vienna, Austria,2002.
  • 7Dong C Y, Lo S H, Cheung Y K. Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium[J]. Computational Methods in Applied Mechanics and Engineering, 2003, 192 (5-6) :683-696.
  • 8Noda N A, Takase Y, Hamashima T. Generalized stress intensity factors in the interaction within a rectangular array of rectangular inclusions[J]. Archive of Applied Mechanics, 2003,73 (5-6) : 311-322.
  • 9Chen M C, Ping X C. A novel hybrid finite element analysis of inplane singular elastic field around inclu- sion corner-tips in elastic media[J]. International Journal of Solids and Structures, 2009, 46 (13): 2527-2538.
  • 10Zhang J, Katusbe N. A polygonal element approach to random heterogeneous media with rigid ellipses or elliptical voids[J]. Computational Methods in Applied Mechanics and Engineering, 1995,19 : 45-55.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部