期刊文献+

利用奇异值分解的鲁棒盲信源分离 被引量:2

SVD based robust approach for blind source separation
下载PDF
导出
摘要 利用Amari等提出的估计函数分析了在最小化非线性主分量标准的意义上分离矩阵的最优解,将其描述为归一化的输入与非线性输出的互相关,提出了一种采用奇异值分解的鲁棒盲信源分离方法.该方法将分离矩阵的估计解释为一种非线性的能量迭代问题.在求解过程中对能量项进行了奇异值分解,从而避免了归一化矩阵的求逆以及计算平方根问题,减小了运算量.由于使用了能量项的正定逆平方根来归一化分离矩阵,因此提高了算法的鲁棒性,并且在每一步迭代中都能使分离矩阵保持正交.实验仿真验证了算法的性能. From the point of view of the estimating function proposed by Amari, we investigate the intrinsic characteristics of the optimal separating matrix for blind source separation (BSS) in the sense of minimizing nonlinear principal component analysis criterion, which formulates the optimal solution as the normalized cross correlation between the input and nonlinearized output. We thus present a singular value decomposition (SVD) based robust scheme for BSS, which considers the estimating procedure of the separating matrix as a nonlinear power iteration problem. By performing SVD of the power term, the computational load can be significantly reduced, which results from circumventing the difficulty of solving the inverse square root of the normalization term. Since the separating matrix is properly normalized by the positive definite inverse square root of the power term, the robustness of this algorithm is greatly improved. Moreover, this guarantees the orthonormality of the separating matrix at each iteration. Some simulation results are also provided to demonstrate the performance of the proposed algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第6期985-989,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60775013)
关键词 盲信源分离 奇异值分解 非线性能量迭代 预白化 blind source separation (BSS) singular value decomposition (SVD) nonlinear power iteration (NPI) pre-whitening
  • 相关文献

参考文献16

  • 1Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis [M]. New York: Wiley, 2001.
  • 2Wentrup M G, Buss M. Subspace Identification from Blind Source Separation[J].IEEE Signal Process Lett, 2006, 13 (2) : 100-103.
  • 3Cardoso J F, Laheld H. Equivariant Adaptive Source Separation [J]. IEEE Trans on Signal Process, 1996, 44(2): 3017-3029.
  • 4Yang H H, Amari S. Adaptive On-l.ine Learning Algorithms for Blind Separation-maximum Entropy and Minimum Mutual Information[J].Neural Computation, 1997, 9(1): 1457-1482.
  • 5Aamri S, Cichocki A. Adaptive Blind Signal Processing-neural Network Approaches[J]. Proceedings of the IEEE, 1998, 86(10) : 2026-2048.
  • 6Yang B. Projection Approximation Subspace Tracking [J]. IEEE Trans on Signal Process, 1995, 43(1): 95-107.
  • 7Pajunen P, Karhunen J. Least-squares Methods for Blind Source Separation Based on Nonlinear PCA [J]. Int J Neural Syst, 1998(8): 601-612.
  • 8Karhunen J, Pajunen P, Oja E. The Nonlinear PCA Criterion in Blind Source Separations Relations with Other Approaches [J].Neurocomputing, 1998, 22(1): 5-20.
  • 9Zhu X L, Zhang X D. Adaptive RLS Algorithm for Blind Source Separation Using a Natural Gradient [J]. IEEE Signal Process Lett, 2002, 9(12): 432-435.
  • 10Abrudan T E, Eriksson J, Koivunen V. Steepest Descent Algorithms for Optimization under Unitary Matrix Constraint [J].IEEE Trans on Signal Process, 2008, 56(3) : 1134-1147.

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部