期刊文献+

电子器件噪声高斯性和线性的定量分析方法 被引量:1

Quantitative analysis of noise's linearity and Gaussianity in electronic devices
下载PDF
导出
摘要 基于高阶统计量理论,采用双相干系数平方和对电子器件噪声进行了定量分析.通过分析非线性非高斯信号、线性非高斯信号、非线性高斯信号、线性高斯信号,给出噪声信号的线性与高斯性的定量判定标准.将这种分析方法用于实验测量的电子器件噪声信号分析,表明电子器件噪声中存在这4种类型的信号,并可以用该方法进行有效区分.研究结果为电子器件噪声非常规特性的分析提供了理论依据与定量判据. A quantitative analysis method of noise's linearity and Gaussianity in electronic devices is deduced on the basis of the higher order statistics (HOS) theory, from which a parameter named the quadratic sum of the bicoherence is brought forward. Through the analysis of four types of noise signals, non-linear non-Gaussian noise, linear non-Gaussian noise, non-linear Gaussian noise, and linear Gaussian noise, a quantitative criterion for appraising the linearity and the Gaussianity of noise signals is presented. By applying this method to the analysis of real noise signals in electronic devices, it is proved that real noise signals could be clearly classified into the above-mentioned four types of noise. This work provides a theoretical basis and quantitative criterion for the analysis of noise's nonconventional characteristic in electronic devices.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第6期1059-1062,1091,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60676053)
关键词 电子器件的噪声 时间序列分析 高阶统计量 高斯性 线性 semiconductor devices noise time series analysis higher order statistics Gaussianity linearity
  • 相关文献

参考文献8

  • 1花永鲜,庄奕琪,杜磊.MOS器件静电潜在损伤的1/f噪声监测方法[J].西安电子科技大学学报,2001,28(5):621-624. 被引量:12
  • 2Du Lei, Zhuang Yiqi. Singularity Comparison between l/f Fluctuation with Statistical Analysis of Wavelet Maxima[J]. Physica D, 2002, 173(1 2): 52-58.
  • 3Johansen J A, Birkelund Y, Zhenrong J, et al. A Statistical Tool for Probing the Coupling hetween Noisy Traps in Semiconductor Devices, with Application to l/f Noise in SiGe HBTs[C]//IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. Atlanta: IEEE, 2004: 119-122.
  • 4Orlyanchik V, Kozub V I, Ovadyahu Z. Non-Gaussian Conductance Noise in Disordered Electronic Systems[J]. Physica Status Solidi(c), 2008, 5(3): 809-813.
  • 5Bardet J-M, Kammoun I. Asymptotic Properties of the Detrended Fluctuation Analysis of Long -Range-Dependent Processes[J]. IEEE Trans on Information Theory, 2008, 5(54): 2041-2052.
  • 6Gyorgyi G, Moloney N R, Ozogany K, et al. Maximal Height Statistics for l/f Signals[J]. Physical Review E, 2007, 75 (2) : 021123. 1-021123.16.
  • 7Torre K, Delignieres D, Lemoine L. Detection of Long-range Dependence and Estimation of Fractal Exponents through ARFIMA Modelling[J]. British Journal of Mathematical and Statistical Psychology, 2007, 60(1): 85-106.
  • 8Hinich M J. Testing for Gaussianity and Linearity of a Stationary Time Series[J]. Journal of Time Series Analysis, 1982, 3(3): 189-176,.

二级参考文献3

共引文献11

同被引文献7

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部