期刊文献+

二代曲线波图像恢复模型及其算法 被引量:2

Image restoration model and algorithms with second-generation curvelets
下载PDF
导出
摘要 假定图像属于Besov空间,可以利用小波系数和Besov范数的等价性来度量图像小波分解的稀疏性.但是,小波并不能十分有效地表示光滑函数的边界,而曲线波对于具有C2奇异性的光滑函数能够达到渐进最优的稀疏表示.基于上述分析,提出了新的二代曲线波的图像恢复模型,运用曲线型分解空间来刻画二代曲线波系数的稀疏性.此外,利用广义条件梯度法得到了迭代硬阈值算法,并给出了解的收敛性定理和停止准则.实验表明新算法比已有方法具有更高的信噪比和更好的主观视觉效果. Suppose that an image belongs to Besov spaces, one can measure sparse decompositions on wavelet basis by the fact that the Besov norms have equivalent descriptions by means of wavelet coefficients. But as is well known, wavelets fail to very efficiently represent smooth objects with edges while curvelets provide an optimally sparse representation of objects with singularities along C2 edges. Based on the analysis above, a novel model using second-generation curvelets is proposed for restoration of the image. Especially, curvelets-type decomposition spaces are employed for characterizing the sparsity of second-generation curvelet coefficients. On the other hand, an iterative hard shrinkage algorithm is obtained by using the generalized conditional gradient method, as well as convergent theorems for solutions and stopping criterion. Finally, experiments show that the proposed algorithm produces better results in terms of both signal-to-noise ratio and subjective visual quality than methods available.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第6期1092-1096,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60872138)
关键词 二代曲线波 迭代 阈值 图像恢复模型 稀疏表示 second-generation curvelets iteration shrinkage image restoration model sparsity representation
  • 相关文献

参考文献11

  • 1Daubechies I, Defrise M, De Mol C. An Iterative Thresholding Algorithm for Linear Inverse Problems [J]. Communications on Pure & Applied Mathematics, 2004, 57(11): 1413-1457.
  • 2Bredies K, Lorenz D A. Iterated Hard Shrinkage for Minimization Problems With Sparsity Constraints[J]. SIAM Journal on Scientific Computing, 2008, 30(2): 657-683.
  • 3Donoho D L. Orthonormal Ridgelet and Linear Singularities[J].SIAM Journal on Mathematical Analysis, 2000, 31(5): 1062-1099.
  • 4Candes E J, Donoho D L. Curvelets: a Surprisingly Effective Nonadaptive Representation for Objects with Edges[M]// Curves and Surfaces. Nashville: Vanderbilt University Press, 2000:105-120.
  • 5Candes E J, Donoho D L. New Tight Frames of Curvelets and Optimal Representations of Objects with C2 Singularities [J]. Communications on Pure and Applied Mathematics, 2004, 57(2): 219-266.
  • 6Candes E J, Demanet L, Donoho D L, et al. Fast Discrete Curvelet Transforms[J].SIAM Multiscal Modeling and Simulation, 2006, 5(3): 861-899.
  • 7Pennec E L, Mallat S. Sparse Geometric Image Representation with Bandelets[J]. IEEE Trans on Image Processing, 2005,14(4): 423-438.
  • 8Demanet L, Ying L X. Wave Atoms and Sparsity of Oscillatory Patterns[J]. Applied and Computational Harmonic Analysis, 2007, 23(3):368-387.
  • 9Plonka G, Ma J W. Nonlinear Regularized Reaction-diffusion Filters for Denoising of Images with Textures[J]. IEEE Trans on Image Processing, 2008, 17(8) : 1283-1294.
  • 10江玲玲,殷海青,冯象初.一种结合稀疏表示和投影正则化的图像分解方法[J].西安电子科技大学学报,2007,34(5):800-804. 被引量:4

二级参考文献12

  • 1冯象初,杨永东,王义龙.基于小波尺度空间的中值函数[J].西安电子科技大学学报,2006,33(2):295-298. 被引量:1
  • 2Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations [M]. Boston: University Lecture Series, American Mathematical Society, 2001.
  • 3Vese L, Osher S. Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing [J]. Journal of Sci Comput, 2003, 19(3) : 553-572.
  • 4Osher S, Sole A, Vese L A. Image Decomposition and Restoration Using Total Variation Minimization and the H^-1 Norm [J]. Multiscale Modeling and Simulation, 2003, 1(3) : 349-370.
  • 5Lieu L, Vese L. Image Restoration and Decomposition Via Bounded Total Variation and Negative Hilbert-sobolev Spaces [EB/OL]. [2006-10-15-]. http://www. math. ucla. edu/-Uieu/ams-meeting/009-slides. pdf.
  • 6Le T, Vese L. Image Decomposition Using the Total Variation Anddiv (BMO)[J]. SIAM Journal on Multiscale Modeling and Simulation, 2005, 4(2): 390-423.
  • 7Starek J L, Elad M, Donoho D L. Image Decomposition Via the Combination of Sparse Representations and a Variational Approaeh [J]. IEEE Trans on Image Proeessing, 2005, 14(10) : 1 570-1 582.
  • 8Chen S, Donoho D, Saunder M. Atomic Decomposition by Basis Pursuit [J]. SIAM J Sci Comput, 1998, 20(1) : 33-61.
  • 9Candes E J, Donoho D L. New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise-C^2 Singularities [J]. Comm Pure Appl Math, 2004, 57(2): 219-266.
  • 10Hu Y J, Huang J, Kwong S, et al. Image Fusion Based Visible Watermarking Using Dual-tree Complex Wavelet Transform[J]. Lecture Notes in Computer Science, 2003, 2 939(2): 86-100.

共引文献3

同被引文献23

  • 1Donoho D L. Orthonormal ridgelet and linear singularities[J]. SIAM Journal .on Mathematical Analysis,2000,31 (5) : 1062-1099.
  • 2Candes E J,Donoho D L. Curvelets:a surprisingly effective non- adaptive representation for objects with edges[C] //Curves and Surfaces Fitting,Saint-Malo 1999. Nashville,TN,2000:105-120.
  • 3Candes E J,Donoho D L. New tight frames of crvelets and opti- mal representations of objects with C singularities[J]. Commu- nications on Pure and Applied Mathematics, 2004,57 (2) : 219-266.
  • 4Demanet L, Ying L X. Wave atoms and aparsity of oscillatory patterns[J]. Applied and Computational Harmonic Analysis, 2007,23 (3) : 368-387.
  • 5Durand S, Froment J. Reconstruction of wavelet coeffcients u- sing total variation minimization[J]. SIAM Sci. Comput, 2003, 24:1754-1767.
  • 6Kindermanny S,Osher S,Jones P W. Deblurring and Denoising of Images by Nonlocal Functionals[R]. UCLA Report, Decem- ber 2004.
  • 7Lou Yi-fei, Zhang Xiao-qun, Osher S. Image Recovery via Nonlo- cal Operators[Z]. UCLA, Manuscript,November 2008.
  • 8Buades A, Coll B, Morel J-M . A non-local algorithm for image denoising[R]. 2005.
  • 9Gilboa G, Osher S. Nonlocal Operators with Applications to Ima- ge Processing [J]. Multiscale Model. Simul. , 2008,7 (3):1005-1028.
  • 10Zhang Xiao-qun, Burger M. Bregmanized Nonloeal Regulariza- tion for Deconvolution and Sparse Reconstruction[R]. CAM re- port, 2009-03.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部