期刊文献+

传感器网络中基于加权Voronoi图的能量均衡数据采集算法 被引量:1

Energy-Balancing Data Collection Based on the Multiplicatively Weighted Voronoi Diagram in Sensor Networks
下载PDF
导出
摘要 基于乘法加权Voronoi图在稀疏无线传感器网络中设计了一条优化的数据采集路径.在这个优化路径中,移动采集节点访问一个虚拟Voronoi图的节点子集进行数据收集.这个Voronoi图节点子集是通过精心设计的迭代过程生成的,在给定通信半径内,能够覆盖所有的传感器节点,同时考虑了传感器节点的能量均衡消耗.连接Voronoi节点子集形成的优化路径缩短了数据采集路径的长度,从而缩短了数据采集时延.通过调整虚拟Voronoi图的覆盖系数,可实现满足不同要求的综合考虑时延与能量消耗的折中方案. Abstract: Based on the multiplicatively weighted Voronoi diagram, an optimized path is designed to acquire data in sparse sensor networks. In the path, the data acquisition is implemented via the mobile acquiring nodes to visit a vertex subset of the virtual Voronoi diagram which is constructed through an iterative virtual site insertion process. The vertex subset covers all sensor nodes in a given transmission radius with the balanced energy consumption taken into consideration. The optimized path concatenating the vertex subset is much shorter than that generated by sensor nodes, thus reduces the time delay in data acquisition. A trade-off between time delay and energy consumption is implemented to meet different requirements by adjusting the coverage coefficient of virtual Voronoi diagram.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第12期1718-1722,共5页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2006AA01Z214) 国家自然科学基金资助项目(606073159 70671020) 新世纪优秀人才支持计划项目 教育部科学技术研究重点项目(1008040) 教育部高等学校博士学科点专项科研基金资助项目(20060145012 20070145017) 辽宁省自然科学基金资助项目(20062022)
关键词 无线传感器网络 加权Voronoi图 移动采集节点 能量均衡 数据采集 wireless sensor networks weighted Voronoi diagram mobile acquiring node energy balancing data acquisition
  • 相关文献

参考文献9

  • 1Vahdat K, Becker D. Epidemic routing for partially connected ad hoc networks. Technical Report CS-200006[R]. Durham: Duke University, 2000.
  • 2Li Q, Rus D. Sending messages to mobile users in disconnected M-hoc wireless networks [ C ] //Proc of 6th Annual International Conference on Mobile Computing and Networking. Boston, 2000:44 55.
  • 3Shah R, Roy S, Jain S, et al. Data Mules: modeling a threetier architecture for sparse sensor networks [ C]//1st IEEE International Workshop on Sensor Network Protocols andApplications. Anchorage, 2003:30 41.
  • 4Somasundara A, Ramamoorthy A, Srivastava M. Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines[ C]//Proc of the 25th IEEE International Real-Time Systems Symposium. Lisbon, 2004 : 296 - 305.
  • 5Tariq M, Ammar M, Zegura E. Message ferry route design for sparse ad hoc networks with mobile nodes[C]//Proc of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing. Florence, 2006 : 37 - 48.
  • 6Yu R Y, Wang X W, Sajal D. A Vomnoi diagram approach for mobile element scheduling in sparse sen.mr networks[ C]// Proc of the 2nd International Conference on Future Generation Communication and Networking. Sanya, 2008:62- 67.
  • 7Gutin G, Punnen A. The traveling salesman problem and its variations[M]. Boston: Kluwer Academic Publishers, 2002.
  • 8Bhattacharya P, Gavrilova L. Voronoi diagram in optimal path planning [ C] // Proc of 4th International Symposium on Voronoi Diagrams in Science and Engineering. Pontypridd, 2007 : 38 - 47.
  • 9Masehian E, Amin-Naseri M. A Voronoi diagram visibility graph-potential field compound algorithm for robot path plarming[J]. Journal of Robotic Systems, 2004,21 (6) : 275 - 300.

同被引文献19

  • 1Sari Kazim. Exploring the impacts of radio frequency identification (RFID) technology on supply Chain performance [ J]. European Journal of Operational Research 207, 2010: 174-183.
  • 2Milan Erdelj, Enrico Natalizio, Tahiry Razafindralambo. Multiple point of interest discovery and coverage with mobile wireless sensors[ C ]. 2012 International Conference on Computing Networking and Communications ICNC (2012)[ C ], Publisher: IEEE, Pages: 121-125.
  • 3Zhao Yiyang, Liu Yunhao, Lionel Ni M. Active RFID based localization using virtual reference elimination parallel processing [ C ]. IEEE Proceedings of International Conference on innovative Computing Information and Control, 2007, 4 (2) : 56-67.
  • 4赵军.基于射频信号强度的零配置室内定位系统[J].浙江大学学报,2007,54(2):12-35.
  • 5Tang H, Miller-Hooks E. Solving a generalized traveling salesperson problem with wtochastic customers[ J]. Computers and Operations Research, 2007, 34(7): 1963-1987.
  • 6Campbell A M, Thomas B W. Runtime reduction techniques for the probabilistic traveling salesman problem with deadlines [ J]. Computers and Operations Research, 2009, 36 (4) : 1231-1248.
  • 7Kang Seungmo, Ouyang Yanfeng. The traveling purchaser problem with stochastic prices: exact and approximate algorithms [ J]. European Journal of Operational Research, 2011, 209 : 265-272.
  • 8Wang Fusheng, Liu Shaorong, Liu Peiya. Complex RFID event processing[ J]. The VLDB Journal, 2009, 18: 913-931.
  • 9Spaccapietra S, Parent C, Damiani M D, Macedo J A, Porto F, Vangenot C. "A conceptual view on trajectories"[ J]. Data and Knowledge Engineering, 2008. 26-146.
  • 10Gomez L, Vaisman A. "Efficient constraint evaluation in categorical sequential pattern mining for trajectory databases"[ J]. EDBT, 2009. 541-552.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部