期刊文献+

冷速对钒微合金化钢形变诱导相变组织的影响 被引量:2

Influence of Cooling Rate on Microstructure Evolution Due to Deformation Induced Ferrite Transformation in Vanadium Microalloyed Steel
下载PDF
导出
摘要 通过热模拟实验考察了在连续冷却条件下,不同的冷却速度对钒微合金化钢的形变诱导铁素体相变(DIFT)组织演变的影响规律.结果表明,大变形后的冷却速度越大,实验用钢的铁素体晶粒越细小;在相同的冷却速度下,钢中的钒含量越多,铁素体晶粒越细小.在较低的冷却速度下,钢中的钒含量越多,钒的碳氮化物析出越多;当冷却速度较大时,钒微合金化实验用钢中没有钒的碳氮化物析出. The effect of cooling rate on DIFT (deformation induced ferrite transformation) microstructure evolution during continuously cooling was investigated for the vanadium microalloyed steel via thermo-simulator. The simulation results showed that the higher the cooling rate after large deformation, the finer the DIF (deformation induced ferrite) grains in specimens and, at the same cooling rate, the higher the vanadium content in the steel, the finer the DIF grains. However, at lower cooling rate, the higher the vanadium content, the more the carbonitride precipitates from vanadium, and no earbonitride precipitates are found in specimens at higher cooling rate.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第12期1739-1742,共4页 Journal of Northeastern University(Natural Science)
基金 中国金属学会-国际钒技术委员会资助项目 中国博士后科学基金资助项目 东北大学博士后科研基金资助项目
关键词 钒微合金化 形变诱导铁素体相变 连续冷却 晶粒长大 碳氮化物 vanadium microalloying DIFT(deformation induced ferrite transformation) continuously cooling grain growth carbonitride
  • 相关文献

参考文献12

  • 1Huang Y D, Froyen L. Important factors to obtain homogeneous and ultrafine ferrite-peartite microstructure in low carbon steel [ J ] J Mater Process Tech, 2002, 124 ( 1 / 2) :216 - 226.
  • 2Yang Z M, Wang R Z. Formation of ultra-fine grain structure of plain low carbon steel through deformation induced ferrite transformation[J]. ISIJ Inter, 2003,43(5) : 761 - 766.
  • 3Hodgson P D, Hickson M R, Gibbs R K. Ultrafine ferrite in low carbon steel [J ]. Scripta Materialia, 1999, 40 ( 10 ) : 1179 - 1184.
  • 4董瀚,孙新军,刘清友,翁宇庆.变形诱导铁素体相变——现象与理论[J].钢铁,2003,38(10):56-67. 被引量:53
  • 5王立军,王凯,任海鹏,刘春明.微量元素对304L不锈钢Hall-Petch关系式的影响[J].东北大学学报(自然科学版),2006,27(11):1236-1239. 被引量:3
  • 6Hong S C, Lim S H, Hong H S, et al. Effect of Nb on grain growth of ferrite in C-Mn steel during isothermal holding after severe deformation[J]. Mater Sci Tecknol, 2004,20 (2) :207 - 212.
  • 7Enomoto M, Nojiri N, Sam Y. Effects of vanadium and niobium on the nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe-C and Fe-C-Mn alloys[J ]. Mater Trans JIM, 1994,35 (12) : 859 - 867.
  • 8Taylor K A. Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite [J]. Scripta Metall Mater, 1995,32(1):7- 12.
  • 9Popov V V, Goldshteyn M I, Akselrod A Y. Predicting the dispersion hardening effect in ferrite-pearlite normalized steels modified with vanadium[J]. Phys Met & Metall, 1990,70 (1):145-152.
  • 10Lagneborg R, Siwecki T, Zajac S, et al. Role of vanadium in microalloyed steels[J]. ScandJMetall, 1999,28(5) :186 - 241.

二级参考文献16

  • 1Dollar M,Gorczyca S.Influence of grain size on the work hardening of austenitic stainless steels[A].Proceedings of the 7th International Conference on Strength of Metals and Alloys (ICSMA 7)[C].Montreal:Pergamon Press,1986.177-182.
  • 2Norstrom L A.Influence of nitrogen and grain size on yield strength in type AISI 316L austenitic stainless steel[J].Metal Sci,1977,11(6):208-212.
  • 3Goldschmidt H J.Effect of boron additions to austenitic stainless steels[J].JISI,1971,209:900-911.
  • 4Williams T M,Stoneham A M,Harries D R.The segregation of boron to grain boundaries in solution treated type 316 austenitic stainless steel[J].Metal Sci,1976,10(1):14-19.
  • 5Tomas B J,Henry G.Boron in austenitic stainless steels[A].Boron in Steels[C].New York:TMS-AIME,1980.80-105.
  • 6Nagoya T,Yamauchi T,Hasegawa M.Trends of high-performance stainless steel generated by purification[J].Phys Stat Sol (A),Applied Research,1997,160:321-328.
  • 7Yamamoto S.High toughness corrosion resistant ferrite stainless steel:high purity 18Cr-2Mo alloy[J].Nipp Kok Techn Report Overs,1988,(52):17-24.
  • 8Petch N J.The cleavage strength of poly crystals[J].J Iron Steel Inst,1953,174:25-28.
  • 9Li J C M.Petch relation and grain boundary sources[J].Trans TMS-AIME,1963,227:239-242.
  • 10Li J C M,Chou Y T.The role of dislocation in the flow stress grain size relationships[J].Metall Trans,1970,1(5):1145-1159.

共引文献54

同被引文献18

  • 1万德成,冯运莉,李杰.轧制工艺对超高强钢组织与力学性能的影响[J].金属热处理,2015,40(6):106-110. 被引量:6
  • 2王凯,王立军,任海鹏,刘春明.低碳钢形变诱导相变组织在冷却过程中的晶粒长大[J].东北大学学报(自然科学版),2005,26(7):640-643. 被引量:1
  • 3Panigrahi B K.Microstructure-related properties of some novel reinforcement bar steel[J].Journal of Materials Engineering and Performance,2010,19(2):287-293.
  • 4David Milbourn,Li Yu.Metallurgical benefits of vanadium microalloying in producing high strength seismic grade rebar[C]//Proceedings of International Seminar on Production and Application of High Strength Seismic Grade Rebar Containing Vanadium,Beijing,2010:32-43.
  • 5Zaky A I,El-Morsy A,El-Bitar T.Effect of different cooling rates on thermomechanically processed high-strength rebar steel[J].Journal of Materials Processing Technology,2009,209:1565-1569.
  • 6Yang Caifu.Development of high strength construction rebars[C]//Proceedings of International Seminar on Production and Application of High Strength Seismic Grade Rebar Containing Vanadium,Beijing,2010:58-70.
  • 7JOON JEONG Y l,KI JOON YU,IN SUP KIM,et al.Role of retained austenite on the deformation of an Fe-0.07 C-1.8 Mn-1.4 Si dual-phase steel[J].Metallurgical Transactions A,1983,14:1497-1504.
  • 8WANG Chao,DING Hua,ZHANG Jun,et al.Effect of partial replacement of Si with Al on the microstructures and mechanical properties of 1000 MPa TRIP steels[J].Journal of Materials Engineering and Performance,2014,23(11):3896-3906.
  • 9康永林.汽车轻量化先进高强钢与节能减排[J].钢铁,2008,43(6):1-7. 被引量:161
  • 10方芳,雍岐龙,杨才福,张永权.V(C,N)在V-N微合金钢铁素体中的析出动力学[J].金属学报,2009,45(5):625-629. 被引量:29

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部