期刊文献+

基于多样性指标的分枝杆菌蛋白质亚细胞定位预测

Prediction of Mycobacterial Protein Subcellular Localization Based on Increment of Diversity
下载PDF
导出
摘要 由于蛋白质亚细胞位置与其一级序列存在很强的相关性,利用多样性增量来描述蛋白质之间氨基酸组分和二肽组分的相似程度,采用修正的马氏判别式(这里称为IDQD方法)对分枝杆菌蛋白质的亚细胞位置进行了预测。利用Jackknife检验对不同序列相似度下的蛋白质数据集进行了预测研究,结果显示,当数据集的序列相似度小于等于70%时,算法的预测精度稳定在75%左右。在对整体852条蛋白质的预测成功率达到87.7%,这一结果优于已有算法的预测精度,说明IDQD是一种有效的分枝杆菌蛋白质亚细胞预测方法。 The protein subcellular location correlates with protein primary sequence. By selecting amino acid composition and ngap dipeptide as parameters,a model combined increment of diversity with modified Mahalanobis Discriminant, called IDQD model, is used to predict four subcellular locations of mycobacterial proteins. The results of jackknife cressvalidation for datasets with sequence identity lower 70% show that overall predicted successful rates are approximately 75 %. The overall accuracy for 852 proteins is 87.7 % which is higher than other methods. The results indicate that the IDQD model can effectively predict the subcellular location of mvcobacterial protein.
作者 林昊
出处 《生物信息学》 2009年第4期252-254,共3页 Chinese Journal of Bioinformatics
基金 电子科技大学优秀毕业生科研启动费
关键词 分枝杆菌 氨基酸 二肽 多样性增量 马氏判别函数 Mycobacterium Amino acid Dipeptide Increment of diversity Mahalanobis Discriminant
  • 相关文献

参考文献15

  • 1Nakashima H, nishikawa K. Discrimination of intraceUtdar and extracellular proteins using amino acid composition and residue - pair frequencies [ J ]. J. Mol. Biol., 1994,238(1 ) : 54 - 61.
  • 2Reinhardt A, Hubbart T. Using neural networks for prediction of the subcellular location of proteins [J]. Nucleic Acids Res., 1998, 26 (9) : 2230 - 2236.
  • 3Cai YD, Liu XJ, Xu XB, Chou KC. Using neural networks for prediction of subcellular location of prokaryotie and eukaryotie proteins [J]. Mol. Cell. Biol. Res. Commun. ,2000,4(3):172-173.
  • 4Hua SJ, Sun ZR. Support vector machine approach for protein subcellular location prediction [ J ]. Bioinformatics, 2001, 17 ( 8 ) : 721 - 728.
  • 5Zhou GP, Doctor K. Subcellular Location Prediction of Apoptosis Proteins[ J] Proteins, 2003,50( 1 ) : 44 - 48.
  • 6Zhang ZH, Wang ZH, Zhang ZR, Wang YX. A novel method for apoptosis protein subcelhtlar localization prediction combining encoding based on grouped weight and support vector machine[ J]. FEBS Lett., 2006, 580(26) : 6169 - 6174.
  • 7Chen YL, Li QZ. Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo - amino acid composition [J]. J. Theor. Biol., 2007,248(2):377- 381.
  • 8Shen HB, Chou KC. Predicting protein subnuclear location with optimized evidence - theoretic K - nearest classifier and pseudo amino acid composition [J]. Biochem. Biophys. Res. Commun., 2005, 337 (3) : 752 - 756.
  • 9Li FM, Li QZ. Using pseudo amino acid composition to predict protein suhnuclear location with improved hybrid approach [ J]. Amino Acids, 2008, 34: 103- 109.
  • 10Du P, Li Y. Prediction of protein submitochondria locations by hybridizing pseudo - amino acid composition with various physicochemical features of segmented sequence[J]. BMC Bioinformatics, 2006, 7: 518.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部