期刊文献+

DNA序列的多重分形Hurst分析

Multifractal Hurst analysis of DNA sequence
下载PDF
导出
摘要 为了深入研究基因组序列的多重分形性质,首先选取12条较长的DNA序列,并根据此12条DNA序列的编码/非编码片段将DNA序列转换成相应的12条时间序列,其次对这12个时间序列进行多重分形Hurst分析,计算它们的Hurst指数,并且利用Hurst指数分析序列的自相似性,进一步将得到的Hurst指数与DNA一维游走模型相比较,发现12条序列均具有长程相关性,这说明DNA序列中确实存在着长程相关现象。 To describe the fractal feature of genomes sequences, a muhifractal theory is presented in the analysis. 12 long gene sequences are selected and these DNA sequences are translated into time series according to their eoding/noneoding segments, then the Hurst exponent of 12 time series was calculated and their selfcomparability were further analyzed according their Hurst exponent. Comparing Hurst exponent with DNA walk model, it is found that these gene sequences have longrange correlation.
出处 《生物信息学》 2009年第4期264-267,共4页 Chinese Journal of Bioinformatics
关键词 多重分形 R/S模型 HURST指数 CGR图形 M ultifractal R/S model Hurst exponent CGR graph
  • 相关文献

参考文献1

二级参考文献12

  • 1[1]Hao,B.L.,et al.2000.Fractals related to long DNA sequences and bacterial complete genomes.Chaos Solitons Fractals 11:825-836.
  • 2[2]Hao,B.L.2000.Fractals from genomes exact solutions of a biology-inspired problem.Physica A 282:225-246.
  • 3[3]Qi,J.,et al.2004.Whole genome prokaryote phylogeny without sequence alignment:a K-string composition approach.J.Mol.Evol.58:1-11.
  • 4[4]Hao,B.L.and Qi,J.2004.Prokaryote phylogeny without sequence alignment:from avoidance signature to composition distance.J.Bioinform.Comput.Biol.2:1-19.
  • 5[5]Hsieh,L.C.,et al.2003.Minimal model for genome evolution and growth.Phys.Rev.Lett.90:018101-018104.
  • 6[6]Chang,C.H.,et al.2004.Shannon information in complete genomes.IEEE Proc.Comput.Syst.Bioinform.Conf.(CSB2004):20-30.
  • 7[7]Xie,H.M.and Hao,B.L.2002.Visualization of Ktuple distribution in prokaryote complete genomes and their randomized counterparts.IEEE Proc.Comput.Syst.Bioinform.Conf.(CSB2002):31-42.
  • 8[8]Jeffrey,H.J.1990.Chaos game representation of gene structure.Nucleic Acids Res.18:2163-2170.
  • 9[9]Almeida,J.S.,et al.2001.Analysis of genomic sequences by chaos game representation.Bioinformatics 17:429-437.
  • 10[10]Rice,P.,et al.2000.EMBOSS:the European Molecular Biology Open Software Suite.Trends Genet.16:276-277.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部