期刊文献+

基于特征的文档子图像检索及其相关反馈

Feature-Based Document Sub-Image Retrieval using Relevance Feedback
下载PDF
导出
摘要 探讨纯文本图像的子图像检索问题。提取其层次结构特征进行匹配,同时为了提高检索精度,又提出了一种适合文档子图像检索的相关反馈算法。实验采用6千幅英文手写体纯文本图像作为样本集,每次迭代返回给用户12幅图像,结果表明每次迭代用时约4秒,6次迭代后召回率基本稳定在83%。 For text image, its hierarchical characteristics is extracted to solve the problem of feature - based sub-image retrieval. To improve the retrieval precision, a suitable relevance feedback algorithm for document sub - image retrieval is presented : for each iteration, positive and negative samples are specified by the user and for each sample image in the cumulative positive and negative samples the system updates the penalty coefficient of its sub- image and determines the query points moving to the positive and negative sample set, then the system updates the query image combining Rocchio algorithm. Performance evaluation on a dataset of over six thousands English handwritten text images shows that the system can achieve a stable average recall value of 83% with 6 iterations while for each such iteration the user can get the top 12 retrieved images in 4 seconds.
出处 《信息技术与信息化》 2009年第5期33-35,共3页 Information Technology and Informatization
基金 山东省自然科学基金(2005ZRB01001) 2008年度山东省中青年科学家科研奖励基金(2008BSB38001)
关键词 文档图像检索 层次树匹配 相关反馈 Rocchio算法 Document image retrieval Hierarchical tree matching Relevance feedback Rocchio algorithms
  • 相关文献

参考文献4

二级参考文献11

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部