期刊文献+

加载路径对不锈钢球形件内高压成形过程影响

Influence of loading paths on hydroforming process of stainless steel spherical part
下载PDF
导出
摘要 为了研究加载路径对不锈钢球形件内高压成形过程的影响,采用实验方法分析了加载路径对成形过程中缺陷形式的影响,获得了80%膨胀率成形管件的壁厚分布规律.结果表明:当初始内压与屈服强度比值小于0.21时,管坯形成两个皱纹,在整形阶段发生开裂;当初始内压与屈服强度比值大于0.25时,管坯在轴向进给阶段即发生开裂.在初始内压与屈服强度比值为0.21~0.25时,可以成形出合格管件,合格管件最大减薄点位于球形件的最大截面处,最大减薄率为24.5%.本文所成形不锈钢球形件内高压成形区间,合理初始内压与屈服强度比值范围为0.21~0.25. The influence of loading paths on hydroforming process of a stainless steel spherical part and the defects pattern was analyzed by experiment. And then thickness distribution of the formed part with the biggest expansion ratio up to 80% was gotten. It is shown that two wrinkles appear when the ratio of the initial pressure to the yield strength is smaller than 0. 21 and bursting occurs during the calibration. However, bursting occurs during axial feeding when the ratio of the initial pressure to the yield strength is bigger than 0. 25. The part can be formed successfully with the ratio of the initial pressure to the yield strength selected in the range from 0. 21 to 0. 25. The biggest thinning appears in the top of the sphere and the biggest thinning rate is 24.5%. A hydroforming process window of the stainless steel spherical part is established, and in this process window the reasonable ratio of the initial pressure to the yield strength is in the range from 0.21 to 0. 25.
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2009年第5期641-644,648,共5页 Materials Science and Technology
基金 国家杰出青年基金资助项目(50525516)
关键词 内高压成形 球形件 加载路径 壁厚分布 hydroforming spherical part loading paths thickness distribution
  • 相关文献

参考文献11

  • 1DOHMANN F, HARTL C. Hydroforming-A method to manufacture lightweight parts [ J]. Journal of Materials Processing Technology, 1996, 60:669-676.
  • 2DOHMANN F, HARTL C. Tube hydroforming: research and practical application [ J ]. Journal of Materials Processing Technology, 1997, 71(2): 174-186.
  • 3AHMETOGLU M, SUTTER K, LI Xin-jun, et al. Tube hydroforming: current re.arch, applications and need for training [ J ]. Journal of Materials Processing Technology., 2000, 98:224-231.
  • 4DOHMANN F, BOHM A, DUDZIAK K U. The shaping of hollow shaped workpieces by liquid bulge forming[ C]//Advanced Technology of Plasticity 1993. Beijing: International Academic Publishers, 1993, 1: 447 - 452.
  • 5ALTAN T, KOC M, AUEULAN Y, et al. Formability and design issues in tube hydroforming [ C ]//Hydroforming of Tubes, Extrusions and Sheet Metals, Volume 1. Stuttgart: MAT INFO Werkstoff-Informationsgesellschaft, 1999. 123 - 131.
  • 6YUAN Shi-jian, WANG Xiao-song, LIU Gang, et al. Control and use of wrinkles in tube hydrofonning [J]. Journal of Materials Processing Technology, 2007, 182: 6-11.
  • 7YUAN Shi-jian, YUAN Wen-jian, WANG Xiao-song. Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming [J]. Journal of Materials Processing Technology, 2006, 177:668 -671.
  • 8FUCHIZAWA S, NARAZAKI M, SHIRAYORI A.Bulge forming of aluminum alloy tubes by internal pressure and axial compression [ C ]//Advanced Technology of Plasticity 1996. Columbus: [ s. n. ], 1996, 1 : 497 - 500.
  • 9HAMA T, OHKUBO T, KURISU K, et al. Formability of tube hydroforming under various loading paths [ J ]. Journal of Materials Processing Technology, 2006, 177 : 676 - 679.
  • 10CHU E, XU Y. Hydroforming of aluminum extrusion tubes for automotive applications. Part I: Buckling, wrinkling and bursting analyses of aluminum tubes [ J]. International Journal of Mechanical Sciences, 2004, 46 : 263 - 283.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部