期刊文献+

利用Gabor滤波分块特征对SAR目标识别 被引量:1

SAR Target Recognition Using Gabor Filter and Sub-block Feature
原文传递
导出
摘要 提出了用Gabor滤波分块统计特征对SAR图像目标进行识别的方法。该方法首先提取预处理后SAR目标图像的低频子带图像,用Gabor滤波器对该子带图像进行滤波,对滤波后各子带图像进行分块,提取所有分块的统计特征作为目标识别特征,最后用支持向量机对该特征进行分类完成目标识别。使用MSTAR数据库中3类SAR目标数据对该方法进行目标识别验证,平均识别率达到93.85%。 A method for SAR target recognition using Gabor filter and sub-block statistical feature is presented in the paper. The low frequency sub-band image extracted from the pre-processed BAR image is filtered by Gabor filter. The each filtered sub-band image is divided into different sub-blocks and the statistical features derived from every sub-block of all filtered sub- band images are regarded as the target recognition feature, which can be used to recognize the targets with SVM. The proposed method is tested and validated on MSTAR dataset for 3-type SAR target recognition, and the average recognition rate is up to 93.85 %.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2009年第23期122-125,133,共5页 Journal of Wuhan University of Technology
关键词 SAR目标识别 低频子带图像 GABOR滤波器 分块统计特征 支持向量机 SAR target recognition low frequency sub-band image Gabor filter sub-block statistical feature SVM
  • 相关文献

参考文献8

  • 1Matthew Turk, Alex Pentland. EigenFaces for Recognition[J ]. Journal of Cognitive Neruoscience, 1991, 3(1) :71-86.
  • 2Liu C, Wechsler H. A Gabor Feature Classifier for Face Recognition[C] //Proceedings of the Eighth IEEE International Conferenceon GomputerVision. Vancouver: [ s. n. ], 2001 (2) : 270-275.
  • 3Huang L, Shimizu A, Kobatake H, et al. Robust Face Detection Using Gabor Filter Features [R]. [ S.l. ]:Pattern Recognition Letters, 2005: 1641-1649.
  • 4Liu C J, Harry W. Independent Component Analysis of Gabor Features for Face Recognition [J ]. IEEE Trans Neural Network, 2003, 14(4): 919- 928.
  • 5Wiskott L, Fellous J M, von der Malsburg C. Face Recognition by Clastic Bunch Graph Matching[J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1997, 19(7) : 775-779.
  • 6Vapnik V N. An Overview of Statistical Learning Theory[J]. IEEE Trans Neural Networks, 1999, 10(5). 988-999.
  • 7Ross T D, Worrell S W, Velten V J, et at. StandaM SAR ATR Evaluation Experiments Using the MSTAR Public Release Data Set[J]. Proc SPIE, 1998, 3370: 566-573.
  • 8Zhao Q, Principe J C. Support Vector Machines for SAR Automatic Target Recognition [J], IEEE Trans Aerospace and Electronic Systems, 2001, 37(2): 643-654.

同被引文献11

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部