期刊文献+

基于多分辨分析和近似熵的脑电癫痫波自动检测 被引量:1

AUTOMATIC DETECTION OF EPILEPTIFORM ACTIVITY IN EEG BASED ON MULTI-RESOLUTION AND APPROXIMATE ENTROPY
下载PDF
导出
摘要 脑电癫痫特征的自动提取在临床应用上具有重要意义。分析了小波多分辨分析和近似熵特征提取的特点,提出了8通道脑电信号癫痫波的检测方法。首先每个通道的信号利用小波变换进行5层分解,然后对分解的细节信号作近似熵计算,发现含有癫痫活动的脑电信号与正常脑电有显著的区别,最后利用Neyman-Pearson准则进行检验比较。实验结果表明,在一定误检率下,检测率最高的是在第一层,而且这种方法保证了检测系统具有较小的误检率和较高的检测率。 The automatic extraction of epileptiform activity feature in EEG is significant to clinical application. A new scheme is presented for detecting epileptiform activity in 8-channel EEG data. The scheme is based on the analysis of multi-resolution and characteristic extraction of approximate entropy(ApEn) of EEG signals. First, the EEG signals on each channel are decomposed up to five levels using discrete wavelet transform, and then detailed coefficients obtained are performed approximate entropy computation, distinct differences are found between the ApEn values of the epileptic and the normal EEG. At last, EEG signals are compared with Neyman-Pearson criteria. Experimental results show that the highest detection rate is at sub-band level 1 when the false detection rate is a certain one,and this scheme assures the detection system has higher detection rate with lower false detection rate.
出处 《计算机应用与软件》 CSCD 2009年第12期7-9,共3页 Computer Applications and Software
基金 国家自然科学基金(60543005 60674089) 上海市重点学科项目(B504)
关键词 癫痫波 多分辨分析 近似熵 NEYMAN-PEARSON准则 Epileptiform activity Muhi-resolution analysis Approximate entropy Neyman-Pearson criteria
  • 相关文献

参考文献8

  • 1Dingle A A, Jones R D, Carroll G J, et al. A multi-stage system to detect epileptiform activity in the EEG, IEEE Trans. Biomed. Eng. 1993,40 (12) :1260- 1268.
  • 2Unser M, Aldroubi A. A review of wavelets in biomedical applications [ C ]//Proc. IEEE, 1996,84:626 - 638.
  • 3Nlukhopadhyay S, Ray G C. A new interpretation of nonlinear energy operator and its efficiency in spike detection, IEEE Trans. Biomed. Eng. 1998,45 (2) :180 - 187.
  • 4Sartoretto F, Ermanl M. Automatic deteetion of epileptiform activity by single level analysis, Clin, Neurophysiol. 1999,110:239 - 249,.
  • 5Calvagno G,Ermani M,Rinaldo R,et al. A muhiresolution approach to spike detection in EEG[ C ]//IEEE International Conference on Acoustics, Speech,2000:3582 - 3585.
  • 6Latka M, Was Z. Wavelet analysis of epileptic spikes, Phys. Rev. E. Stat. Nonlinear Soft Matter Phys. 2003,67 (5) : 1 - 6.
  • 7Subasi A. Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl. 2006,31:320- 328.
  • 8Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 2008.

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部