期刊文献+

基于最小二乘支持向量机的网页主题语义分类的研究 被引量:2

ON SEMANTIC CLASSIFICATION OF WEBPAGE SUBJECTS BASED ON LEAST SQUARES SUPPORT VECTOR MACHINES
下载PDF
导出
摘要 提出了对网页主题进行语义扩展的方法,利用最小二乘支持向量机LSSVM(least squares support vector machines)来代替传统的支持向量机SVM(support vector machine)的分类技术。在建立LSSVM模型的多类别分类算法基础上,将其应用到网页主题语义分类。实验表明,最小二乘支持向量机学习速度快,在小样本情况下具有良好的非线性建模和泛化能力,对网页主题语义分类具有很好的效果。 This paper proposes a new method of semantic extension for webpage subjects by utilizing the least squares support vector machines (LSSVM) to replace the classification technique with traditional support vector machine (SVM). On the basis of setting up the multiclass classification algorithm of LSSVM model, the authors applied the method to semantic classification of webpage subjects. The experimental results show that LSSVM model has some advantages such as fast learning speed, nonlinearity modelling and generalization power in condition of small number of examples, and has good performance on semantic classification of webpage subjects.
出处 《计算机应用与软件》 CSCD 2009年第12期53-55,59,共4页 Computer Applications and Software
基金 国家"十一五"科技支撑计划项目(2006BAK11B03)
关键词 最小二乘支持向量机 语义建模 网页主题语义分类 LSSVM Semantic modelling Semantic classification of webpage subjects
  • 相关文献

参考文献15

  • 1Dumais S, Platt J, Heckerman D, et al. Inductive learning Algorithms and representations for text categorization [ C ]//In Proceedings of ACMCIKM98. Bethesda :ACM, 1998.
  • 2NELLO C,JOHN S T.支持向量机导论[M].李国正,王猛,曾华军,等译.北京:电子工业出版社,2004,82-139.
  • 3Vasehgi S V. State Duration Modeling in Hidden Markov Models[ J ]. Signal processing, 1995, 41 ( 1 ) : 31 - 41.
  • 4Vladimir N,Vapnik. Statistical Learning Theory[ M]. New York:John Wiley&Sons, Inc. , 1998.
  • 5Suykens J A K , Vandewalle J. Least Squares Support Vector Machine Classifiers [ J ]. Neural Processing Letters, 1999,9 ( 3 ) :293 - 300.
  • 6Suykens J A K,Vandewalle J. Least Squares Support Vector Machine Classifiers [ J ]. Neural Processing Letters, 1999 (6) :293 - 300.
  • 7王明春,王正欧,张楷,郝玺龙.一种基于CHI值特征选取的粗糙集文本分类规则抽取方法[J].计算机应用,2005,25(5):1026-1028. 被引量:8
  • 8Cheng Jian Lin, Shang Jin Hong, Chi Yung Lee. Using Least Squares Support Vector Machines for Adaptive Communication Channel Equalization [ J ]. International Journal of Applied Science and Engineering, 2005, 11 (3) : 51- 59.
  • 9Suykens J A K, Brabanter J De, Lukas L, et al. Weighted Least Squares Support Vector Machines: robustness and Sparse Approximation [ M]. Nauru-computing, 2002.
  • 10Saunders C, Gammerman A, Vovk V. Ridge Regression learning Algorithm in Dual Variables[ C]//Proceedings of the 15th Intemational Conference on Machine Learning( IC2 ML '98) :Morgan Kaufmann,1999:515 - 521.

二级参考文献50

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184

共引文献278

同被引文献19

  • 1靳小波.文本分类综述[J].自动化博览,2006,23(z1):24-29. 被引量:16
  • 2高茂庭,王正欧.几种文本特征降维方法的比较分析[J].计算机工程与应用,2006,42(30):157-159. 被引量:16
  • 3Ozgur Depren,Murat Topallar,Emin Anarim,M Kemal Ciliz.An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks[J].Expert Systems with Applications,2005,29(4):713-722.
  • 4Pei-Chann Chang,Shih-Hsin Chen,Liu Chen-Hao.Sub-population genetic algorithm with mining gene structures for multiobjective flowshop scheduling problems[J].Expert Systems with Applications,2007,33(3):762-771.
  • 5V Srinivas,K Ramanjaneyulu.An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks[J].Advances in Engineering Software,2007,38(7):475-487.
  • 6Taeshik Shon,Jongsub Moon.A hybrid machine learning approach to network anomaly detection[J].Information Sciences,2007,177(18):3799-3821.
  • 7杨光正,吴岷,张晓莉.模式识别[J].合肥:中国科学技术大学出版社,2001:108—220.
  • 8张堪奇.支持向量机在Web文本分类中的分析与应用[D].暨南大学硕士学位论文,2008,6.
  • 9罗喻.支持向量机在机器学习中的应用研究.西南交通大学[D].博士学位论文,2007,6.
  • 10秦玉平,王秀坤,艾青,刘卫江.多主题文本分类的实现算法[J].计算机工程,2008,34(2):190-192. 被引量:5

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部