期刊文献+

基于精英粒子群优化算法的图像分割方法 被引量:4

AN IMAGE SEGMENTATION METHOD BASED ON ELITE THEORY-IMPROVED PARTICLE SWARM OPTIMIZATION
下载PDF
导出
摘要 结合模式识别理论的聚类思想,将基于群智能理论的粒子群优法算法加以改进应用于图像分割中,提出一种基于精英粒子群优化算法的图像分割方法。新方法基于Pareto的精英理论对粒子群算法加以改进,在每次迭代中,生成一个Pareto精英群体,每个粒子更新时的全局极值都是从精英群体中随机选取一个个体作为全局极值。用改进的粒子群优化算法自适应选取分割阈值。实验表明,与遗传算法及标准的粒子群优化算法相比,对于具体的问题该算法具有较好的聚类效果,能够较好地分割图像。 A novel image segmentation method based on elite PSO is provided, which is in combination with clustering thoughts of pattern recognition theory and applies the improved swarm intelligent theory-based particle swarm optimization to image segmentation. The new method derives from the improvement of the PSO with elite theory proposed by Vilfredo Pareto. Every time when iterate, a Pareto elite population is produced, and each global extremum of updating particle is the global extremum of an individual randomly chosen from elite population. The improved particle swarm optimization is employed to adaptively select segmenting threshold. Numerical experiments show that the improved PSO algorithm performs better for the considered problems in clustering result and image segmentation than GA and standard PSO.
作者 张磊 高尚
出处 《计算机应用与软件》 CSCD 2009年第12期89-92,共4页 Computer Applications and Software
基金 江苏省高校自然科学基础研究项目资助(08KJB520003)
关键词 图像分割 粒子群优化算法 阈值 精英理论 聚类 Image segmentation Particle swarm optimization(PSO) Threshold Elite theory Cluster
  • 相关文献

参考文献8

  • 1Felix T S Chan, Manoj Kumar Tiwari. Swarm Intelligence: Focus on Ant and Particle Swarm Optimization[ M]. Vienna,Austria: hech Education and Publishing,2007 : 163 - 178.
  • 2Suchendra M Bhandarkar, Hui Zhang. Image Segmentation Using Evolutionary Computation. IEEE Transactions on evolutionary computation, 1999,3 ( 1 ).
  • 3Salima Ouadfel, Mohamed Batouche. An Efficient Ant Algorithm for Swarm-Based Image Clustering [ J ]. Journal of Computer Science,2007, 3(3) :162 -167.
  • 4Kennedy J, Eberhart R. Particle Swarm Optimization[ C ]//Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, NJ, Perth, IEEE service center, 1995:1942- 1948.
  • 5许永峰,张书玲.带组织的粒子群优化算法——OPSO[J].计算机应用与软件,2008,25(2):234-236. 被引量:6
  • 6帕雷托.普通社会学纲要[M].田时纲,译.北京:三联书店,2001.
  • 7Shi Y, Eberhart R C. A modified particle swarm optimizer [ C ]//proceedings of the IEEE International conference on Evolutionary Computation, Piscataway, NJ, Anchorage, AK USA: IEEE service center. 1998:69 - 73.
  • 8Pal N R, Pal S K. A review on image segmentation techniques [ J ]. Pattern Recognition, 1993 : 26 (9) : 1277 - 1294.

二级参考文献8

  • 1潘峰,涂序彦,陈杰,付继伟.协调粒子群优化算法—HPSO[J].计算机工程,2005,31(1):169-171. 被引量:10
  • 2Kennedy J, Eberhart R C. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, Perth Australia, 1995 , 1942 - 1948.
  • 3Eberhart R C, Shi Y. Particle swarm optimization : Development , applications and resources. In : Proceedings of the Congress on Evolutionary Computation,2001,81 - 86.
  • 4Sugauthan P N. Particle swarm optimizer with neighbourhood operator. In : Proceedings of the Congress on Evolutionary Computation, 1999, 1958 - 1961.
  • 5Kennedy J. Small worids and mega-minds : effects of neighbourhood to-pology on Particle swarm performance. In : Proceedings of IEEE Congress on Evolutionary Computation,1999,1931 -1938.
  • 6Wilcox J R. Organizational within a learning classifier system. University of Illinois, Illinois, USA, 1995.
  • 7刘静,钟伟才,刘芳焦,李成.组织协同进化分类算法[J].计算机学报,2003,26(4):446-453. 被引量:25
  • 8刘静,钟伟才,刘芳,焦李成.组织进化数值优化算法[J].计算机学报,2004,27(2):157-167. 被引量:19

共引文献6

同被引文献42

引证文献4

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部