期刊文献+

控制圆点临界图的若干性质

Some characters of domination dot-critical graphs
下载PDF
导出
摘要 对于图G,如果收缩任意一条边,它的控制数下降,则称图G是圆点临界图.如果粘贴图G中任意两个顶点,它的控制数下降,则称图G是全圆点临界图.证明了对于k-正则图,当k为奇数时不存在2-全圆点临界图;当k为偶数时当且仅当此图为k+2阶图时其为2-全圆点临界图.还对是否存在不含临界点的-全圆点临界图(k≥4)进行了研究,并得出结论:存在不含临界点的4-全圆点临界图和5-全圆点临界图. A graph G is dot-critical if contracting any edge decreases the domination number. It is totally dot-critical if identifying any two vertices decreases the domination number. This paper shows that for any k-regular graph, if k is odd, there doesn't exist a 2-totally dot-critical graph; if k is even, the graph is 2-totally dot-critical if and only if the number of vertices in the graph is k+2. It also studies for each k≥4,whether exists a k-totally dot-critical graph with no critical vertices and obtain a result: there exists a 4-totally dot-critical graph and a 5-totally dot-critical graph with no critical vertices.
作者 邓婷 王春香
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期534-536,共3页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(10571071 10671081)
关键词 圆点临界图 顶点临界图 边临界图 控制数 dot-critical graph vertex-critical graph edge-critical graph domination number
  • 相关文献

参考文献8

  • 1Bondy J A, Murty U S R. Graph Theory with Applications [M]. New York: The Macmilan press LTD,1976.
  • 2Goddard W, Haynes T W, Henning M A, et al. The diameter of total domination vertex critical graphs[J]. Discrete Mathematics, 2004,286 : 255-261.
  • 3Cockayne E, Dawes R, Hedetnien S. Total domination in graphs[J]. Networks, 1980, 10 : 211-219.
  • 4Haynes T W, Hedetniemi S T, Slater P J. Fundamentals of Domination in Graphs[M]. New York: Marcel Dekker, 1998.
  • 5Burton T, Sumner D P. Domination dot-critical graphs[J]. Discrete Mathematics, 2006,306 : 11-18.
  • 6Sumner D P, Blitch P. Domination critical graphs[J]. JCTS- er,1983,B34:65-76.
  • 7Brigham R C,Chinn P Z,Dutton R D. A study of vertex domination critical graphs[C]//Technical Report, University of Central Florida, 1984.
  • 8王朝瑞.图论[M].第3版.北京:北京理工大学出版社,2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部