摘要
在现有蚁群算法的基础上,提出了一种改进的蚁群算法(IACA)来确定有机化合物分子式。人工蚂蚁在整数空间移动,并根据与信息素相关的转移概率指导搜索方向。在算法优化过程中使用了带最大最小信息素的信息素更新规则。实验证明,该算法用来确定有机化合物分子式时,在收敛性和可搜索的变量取值范围等方面优于改进的自适应遗传算法(IAGA)。
On the basis of the existing ant colony algorithm, an Improved Ant Colony Algorithm (IACA) was presented for determining molecular formulas of organic compounds. The artficial ants moved around the set of integer space. The transformation probability based on the pheromone was used to direct the search process. In the algorithm, the new pheromone updating rule with max-rain pheromone was deigned. The experimental results on determining molecular formulas of organic compounds demonstrate that convergence and searchable variable value range of IACA are much better than other Improved Adptive Genetic Algorithms (IAGA) .
出处
《计算机应用》
CSCD
北大核心
2009年第B12期165-166,191,共3页
journal of Computer Applications
关键词
蚁群算法
整数规划
元素分析
质量分数
分子式
Ant Colony Algorithm(ACA)
integer programming
elemental analysis
mass fraction
molecular formula