期刊文献+

基于高斯曲率和局部方差的去噪模型 被引量:1

Noise removal model based on Gaussian curvature and local variance
下载PDF
导出
摘要 用PM(Perona and Malik)模型去除椒盐噪声,使低噪声强度下未受噪的平坦区域的像素值减小,但是不能在有效去噪的同时保护纹理细节,导致图像模糊。为此,用局部方差和高斯曲率代替梯度模值来描述图像局部纹理细节,并定义了噪声度量函数,随之引入扩散方程,得到新去噪模型。实验结果表明:新模型不仅能有效地除去椒盐噪声和解决PM模型的问题,而且信噪比和峰值信噪比均有显著提高。因此新模型优于PM模型。 PM ( Perona and Malik) model uesd to remove the pepper and salt noise can reduce the pixel values of fiat region where noise in low intensity, but can not protect texture details while denoising, so local variance and Gaussian curvature in place of gradient modulus were used to describe local texture details of image, and noise-measured function was defined and introduced to diffusion equation, and then a new model was proposed. Experimental results show that new model not only removes noise and solves the problems of PM model effectively, but also both SNR and PSNR increase significantly.
出处 《计算机应用》 CSCD 北大核心 2009年第B12期228-230,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60736046)
关键词 扩散方程 噪声度量函数 方差 高斯曲率 纹理细节 diffusion equation noise-measured funetion variance Gausslan curvature texture detail
  • 相关文献

参考文献8

  • 1PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion [ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990, 12(7) : 629 - 639.
  • 2ANDERSON G L, NETRAVALI A N. Image restoration based on a subjective criterion[ J]. IEEE Transactions on System, Man and Cybemetics, 1976, 6(12) : 845 - 853.
  • 3KATSAGGELOS A K, BIEMOND J, SCHAFER R W, et al. A regularized iterative image restoration algorithm[ J]. IEEE Transaction on Signal Processing, 1991, 39(4) : 914 -929.
  • 4LEE S-H, SEO J K. Noise removal with gauss-curvature driven diffusion[ J]. IEEE Transaction on Image Processing, 2005, 14(7) : 904 - 909.
  • 5WEICKERT J. A review of nonlinear diffusion filtering[ C]//ScaleSpace Theory in Computer Vision, LNCS 1252. Berlin: Springer, 1997:3 - 28.
  • 6EFSTRATIADIS S N, KATSAGGELOS A K. Adaptive iterative image restoration with reduced computational load[ J]. Optical Engineering, 1990, 29(12) : 1458 - 1468.
  • 7钱惠敏,茅耀斌,王执铨.基于各向异性扩散的几种平滑算法比较及改进[J].南京理工大学学报,2007,31(5):605-611. 被引量:13
  • 8余庆军,谢胜利.基于人类视觉系统的各向异性扩散图像平滑方法[J].电子学报,2004,32(1):17-20. 被引量:20

二级参考文献20

  • 1[1]Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion [J].IEEE Trans.Pattern Anal.Machine Intell.,1990,12(7):629-639.
  • 2[2]You Y L,Kaveh M.Blind image restoration by anisotropic regularization [J].IEEE Transactions on Image Processing,1999,8(3):396-407.
  • 3[3]You Y L,Xu W,Tannenbaum A,Kaveh M.Behavioral analysis of anisotropic diffusion in image processing [J].IEEE Trans.Image Processing,1996,5(11):1539-1553.
  • 4[4]Catte F,Lions P L,Morel J M,Coll T.Image selective smoothing and edge detection by nonlinear diffusion [J].SIAM J.Numer.Anal.,1992,29(2):182-193.
  • 5[5]Monteil J,Beghdadi A.A new interpretation and improvement of the nonlinear anisotropic diffusion for image enhancement [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(9):940-946.
  • 6[6]LIN Zhou-chen,SHI Qing-yun.An anisotropic diffusion PDE for noise reduction and thin edge preservation [A].Proceedings.International Conference on Image Analysis and Processing [C].Venice Itaty,1999.102-107.
  • 7[7]CHEN Yun-mei,Bose P.On the incorporation of time-delay regularization into curvature-based diffusion [J].Journal of Mathematical Imaging and Vision,2001,14:149-164.
  • 8[8]Rudin L I,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms [J].Physica D,1992,60:259-268.
  • 9[9]Anderson G L,Netravali A N.Image restoration based on a subjective criterion [J].IEEE Trans.Syst.,Man,Cybern.,1976,SMC-6(12):845-853.
  • 10[10]Katsaggelos A K,Biemond J et al.A regularized iterative image restoration algorithm [J].IEEE Transactions on Signal Processing,1991,39(4):914-929.

共引文献27

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部