期刊文献+

动态纹理背景的建模

Modeling dynamic textured background
下载PDF
导出
摘要 针对室外条件下动态纹理背景,采用自回归运动平均(ARMA)模型建立背景模型,并引入快速增量主元分析(IPCA)算法对模型进行降维,并辨识其中参数,实现最大似然估计。运用增量主元分析算法,不需要估算协方差矩阵,直接可以递增地得到特征向量和奇异值,计算出样本序列的主要元素。完成参数辨识后,ARMA模型可以合成无限长度的预测图像序列。最后,仿真实验证明了算法的有效性。 A dynamic textured background in real world situations was modeled by an Antoregressive Moving Average (ARMA) model. Then a fast Incremental Principal Component Analysis (IPCA) algorithm was introduced to reduce dimensionality and identify, and compute the principal components of a sequence of samples incrementally without estimating the covariance matrix. Once learned, a model had predictive power and can be used for extrapolating synthetic sequences with infinite length. Preliminary experiments with this method have achieved promising results.
作者 何莎 费树岷
出处 《计算机应用》 CSCD 北大核心 2009年第B12期241-243,共3页 journal of Computer Applications
关键词 动态纹理 背景建模 自回归运动平均模型 增量主元分析 子空间系统辨识 dynamic textures background modeling Autoregressive Moving Average (ARMA) model Incremental Principal Component Analysis (IPCA) subspace system identification
  • 相关文献

参考文献12

  • 1ZHONG J, SCLAROFF S. Segmenting foreground objects from a dynamic textured background via a robust Kalman filter [ C]// Proceedings of 9th IEEE International Conference on Computer Vision. Washington, DC: IEEE, 2003, 1:44 -55.
  • 2REN Y, CHUA C S, HO Y K. Motion detection with nonstationary background [ J]. Machine Vision and Application, 2003, 13(5/6) : 332 - 343.
  • 3MITTAL A, PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation [ C]// CRPR 2004: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE, 2004, 2:302 - 309.
  • 4SHEIKN Y, SHAH M. Bayesian modeling of dynamic scenes for object detection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11) : 1778 - 1792.
  • 5AMIAZ T, FAZEKAS S, CHETVERIKOV D, et al. Detecting regions of dynamic texture [ C]//SSVM 2007. Bedim Springer-Verlag, 2007:848-859.
  • 6FAZEKAS S, AMIAZ T, CHETVERIKOV D, et al. Dynamic texture detection based on motion analysis [ J]. International Journal of Computer Vision, 2009, 82(1) : 48 - 63.
  • 7DORETTO G, CHIUSO A, WU Y N, et al. Dynamle textures [ J]. International Journal of Computer Vision, 2003, 51(2): 91 -109.
  • 8WENG J, ZHANG Y, HWANG W S. Candid covarianee-free incremental principal component analysis [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25( 8): 1034- 1040.
  • 9夏良正.数字图像处理[M].南京:东南大学出版社,1999.43-83.
  • 10ZHANG Y, WENG J, Convergence analysis of complementary candid incremental principal component analysis [ EB/OL]. [ 2009 - 04 - 10]. http://www. cse. msu. edu/ei/ccipca_proof. pdf.

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部