摘要
提出了一种基于数学形态学方向笔画提取的希尔伯特—黄变换(HHT)方法,对脱机手写体汉字进行特征提取。通过对HHT得到的Hilbert谱和边际谱的分析,构成4维结构特征和32维统计特征,并对其进行特征融合后得到36维特征向量作为最终的识别特征。试验结果表明其识别率比单独使用Gabor变换、小波变换等方法的识别率高。在识别速度上虽然比矩变换、数学形态学等方法慢,但是比Gabor变换的速度有明显提高,比多方法特征融合的方法在速度上有一定提高。该研究表明HHT作为一种新的信号分析方法,可以被有效地运用于提取汉字图像的特征。
Based on mathematical morphology, the authors studied a new feature extraction approach for off-line handwritten Chinese characters by Hilbert-Huang Transform (HHT). After an analysis of Hilbert spectrum and marginal spectrum extracted by HHT, 4-dimensional structure features and 32-dimensional statistical features were reached. A 36- dimensional vector gained by the feature fusion was the final recognition feature. Experimental results show that this method has a higher recognition rate than Gabor transform, wavelet transform etc., and it also has a higher recognition speed than most of the feature extraction methods available. It indicates that HHT can be effectively applied to the feature extraction of Chinese characters.
出处
《计算机应用》
CSCD
北大核心
2009年第B12期289-290,293,共3页
journal of Computer Applications
关键词
特征提取
HHT
数学形态学
汉字
feature extraction
Hilbert-Huang Transform (HHT)
mathematical morphology
Chinese characters