期刊文献+

时滞模糊系统的鲁棒非脆弱H_∞控制 被引量:8

Robust and non-fragile H_∞ control of delay-dependent fuzzy systems
原文传递
导出
摘要 针对一类带有时变时滞的不确定模糊系统,研究了时滞相关鲁棒非脆弱H∞反馈控制问题.基于模糊李亚普诺夫-克拉索夫斯基泛函和并行分布补偿算法(PDC)设计了模糊控制器,并在推导过程中引入了自由权制矩阵,使得在控制器存在可加性摄动的情况下,其闭环系统鲁棒渐近稳定.利用线性矩阵不等式(LMI),导出了非脆弱鲁棒控制律的存在条件.仿真验证了结果的有效性. A delay-dependent robust H∞ non-fragile control was studied for a class of uncertain T-S fuzzy systems with time-varying delay. By introducing free-weighting matrices, a delay-dependent robust non-fragile controller was designed via a fuzzy Lyapunov-Krasovkii functional and the parallel distributed compensation (PDC) approach, such that the closed-loop systems was robust asymptotically stable in the presence of the additive controller gain perturbations. A sufficient condition for the existence of such robust non-fragile controller was derived via the linear matrix inequality (LMI). The simulation examples are given to show the effectiveness of the approach.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第12期68-71,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国防基础科研项目(C0520061364)
关键词 模糊控制系统 鲁棒控制 时滞系统 线性矩阵不等式 T—S模型 非脆弱控制 fuzzy control systems robust control delay systems linear matrix inequality (LMI) T-S model non-fragile control
  • 相关文献

参考文献10

  • 1Pang C T, Lur Y Y. On the stability of takagi-sugeno fuzzy systems with time-varying uncertainties [J]. IEEE Trans Fuzzy Syst, 2008, 16(1): 162-170.
  • 2Gao J H, Liu X, Lam J. Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay[J]. IEEE Trans Syst Man and Cybe, 2009, 39(2): 306- 316.
  • 3Yuan K, Li H X, Cao J. Robust stabilization of the distributed parameter system with time delay via fuzzy control[J]. IEEE Trans Fuzzy Syst, 2008, 16(3): 567-584.
  • 4Keel L H, Bhattacharyya S P. Robust fragile or optimal[J]. IEEE Trans Auto Cont, 1997, 42(8): 1 098-1 105.
  • 5Liu G Y, Zhang Q L, Zhai D. Non-fragile H-infinite control for T-S fuzzy systems via LMI[C]//ICCA 2005, 6: 27-29.
  • 6郑科,俞立,张贵军.基于T-S模型的非线性系统非脆弱保性能模糊控制[J].系统工程与电子技术,2006,28(4):577-581. 被引量:2
  • 7Zhang B Y, Zhou S S, Li T. A new approach to robust and non-fragile H-infinte control uncertain fuzzy systems[J]. Information Scie, 2007:5 118-5 133.
  • 8Li X, Souza C E. Delayed-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach [J]. IEEE Trans Auto Cont, 1997, 42:1 144-1 148.
  • 9Cao Y Y, Frank P M. Robust H disturbance attenuation for a class of uncertain discrete-time fuzzy systems[J]. IEEE Trans Fuzzy Syst, 2000, 8(4) : 406- 415.
  • 10Tuan H D, Apkarian P, Narikiyo T, et al. Parameterized linear matrix inequality techniques in fuzzy control system design[J]. IEEE Trans Fuzzy Syst, 2001, 9(2): 324-332.

二级参考文献9

  • 1郑科,徐建明,俞立.基于T-S模型的倒立摆最优保性能模糊控制[J].控制理论与应用,2004,21(5):703-708. 被引量:17
  • 2Keel L,Bhattacharyya S.Robust,fragile,or optimal?[J].IEEE Trans.Autom.Contr.,1997,42(8):1098-1105.
  • 3Corrado J R,Haddad W M.Static output feedback controllers for systems with parametric uncertainty and controller gain variation[C].Proc.of the American Control Conference,1999,2(2-4):915 -919.
  • 4Yang Guang-hong,Wang Jian-liang.Non-fragile H∞ control for linear systems with multiplicative controller gain variations[J].Automatica,2001,37(5):727-737.
  • 5Park Ju H,Jung Ho Y.On the design of nonfragile guaranteed cost controller for a class of uncertain dynamic systems with state delays[J].Applied Mathematics and Computation,2004,150(1):245-257.
  • 6Xu Shengyuan,Lam James,Wang Jianliang.Non-fragile positive real control for uncertain linear neutral delay systems[J].Systems & Control Letters,2004,52(1):59-74.
  • 7Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Trans.on Syst.Man.Cyber.,1985,15(1):116-132.
  • 8Wang L X.Fuzzy systems as universal approximators[C].Proc.of IEEE Int.Conf.Fuzzy Systems.San Diego,USA,1992.1163-1170.
  • 9Tanaka Kazuo,Wang Hua O.Fuzzy control systems design and analysis:a linear matrix inequality approach[M].Wiley,Inc.,2001.

共引文献1

同被引文献73

  • 1翟丁,张庆灵,刘国义,张友.一类时滞线性系统的鲁棒非脆弱控制器设计[J].控制与决策,2006,21(5):559-562. 被引量:15
  • 2Yan H C, Huang X H, Wang M, et al. Delay--dependent stability criteria for a class of networked control systems with multi--input and multi-output[J]. Chaos, Solitions and Fractals,2007, 34(3):997--1005.
  • 3Keel L H, Bhattacharyya S P. Robust, Fragile, or Optimal? [J]. IEEE Transactions on Automatic Control, 1997, 42(8) : 1098-- 1105.
  • 4Wang R J. Nonlinear decentralized state feedback controller for uncertain fuzzy time-delay interconnected systems[J]. Fuzzy Sets and Syst. , 2005,151 ( 1 ):191- 204.
  • 5Wang W J, Luoch L. Stability and stabilization of fuzzy large-scale systems [J]. IEEE Trans. Fuzzy Syst. , 2004,12(3): 309-315.
  • 6Chen C W , Chiang W L, Hisao F F. Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems[J]. Mathematics and Computers in Simulation, 2004,66(6):523-537.
  • 7Mohler R R, Bilincar Control Processes[M]. New York: Academic, 1973.
  • 8Elliott D L. Bilinear Systems in Encyclopedia of Electrical Engineering [M]. New York:Wiley, 1999.
  • 9Li T H S, Tsai S H. T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems [J]. IEEE Trans. Fuzzy Syst. , 2007,15(3) :494-505.
  • 10Tsai S H, Li T H S. Robust fuzzy control of a class fuzzy bilinear systems with time-delay [J]. Chaos, Solitons and Fractals (2007) ,DOI: 10. 1016/j. chaos. 2007.06. 057.

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部