期刊文献+

基于EKF的移动机器人RFID定位系统研究 被引量:3

Study of Mobile-robot RFID Position System Based on Extended Kalman Filter
下载PDF
导出
摘要 由于RFID读取器对标签的距离不可知,基于RFID的定位会产生固有误差。为了减小RFID定位系统的固有误差,研究了移动机器人融合RFID、超声波、电子罗盘和里程计自定位的方法,通过扩展卡尔曼滤波(extended Kalman filter,EKF)解决RFID定位在位姿更新之间的误差累积,提高定位的性能。通过Matlab仿真,试验结果表明该算法可行且有效。 RFID has been used to the robot position system with its capability of storing location and environment information, convenience of accessing to the information and its strong adaptability to the environment change. Because RFID reader could not get label's distance certainly ,RFID position system always causes inherent error. In order to reduce the inherent error of the system ,a self - localization method of mobile - robot combined with RFID, ultrasonic, electronic compass and speedometer was investigated. Error accumulation during RFID position changing was eliminated by extended Kalman filter. The method could therefore lower the position error and increase the performance of traditional RFID position. With Matlab simulation, the test results verified feasibility and validity of this arithmetic.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2009年第6期917-921,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 教育部博士点基金资助项目(20060497017)
关键词 移动机器人 扩展卡尔曼滤波 RFID 定位系统 mobile-robot extended Kalman filter RFID position system
  • 相关文献

参考文献8

  • 1CHAE H. Combination of RFID and vision for mobile robot localization[ C]//Proceedings of the 2005 Intelligent Sensors, Sensor Networks & Information Processing Conference. New York: [ s. n. ] , 2005:75 - 80.
  • 2DEYLE T, CHARLES C. Probabilistic UHF RFID tag pose estimation with multiple antennas and a multipath RF propagation model [ C ]//2008 IEEE/RSJ International Conference on Robots and Intelligent Systems. New York: [ s. n. ] ,2008:1379 -1384.
  • 3BYOUNG - SUK C. Localization and map - building of mobile robot based on RFID sensor fusion system[ C ]// IEEE International Conference on Industrial Informatics INDIN). New York: [ s. n. ] ,200S :384 - 3S9.
  • 4SOONSHIN H, HYUNGSOO L. An efficient localization scheme for a differential - driving mobile robot based on RFID system[ J]. IEEE Transactions on Industrial Electronics,2007,54 (6) :3362 - 3369.
  • 5MYUNGSIK K, NAK Y C. Fusion of direction sensing RFID and sonar for mobile robot docking [ C ]//2008 IEEE International Conference on Automation Science and Engineering. New York : [ s. n. ] ,2008:709 - 714.
  • 6TOSHIHIRO H, TOMOTAKA W. A multi- sensingrange method for position estimation of passive RFID tags [ C]//IEEE International Conference on Wireless & Mobile Computing, Networking & Communication. New York : [ s. n. ] ,2008:208 - 213.
  • 7YOSUKE S, YOSHIHIKO K. Machine learning approach to self - localization of mobile robots using RFID tag [C ]//2007 IEEE,/ASME International Conference on Advanced Intelligent Mechatronics. New York : [ s. n. ], 2007:476 - 481.
  • 8王晓宇,闫继宏,秦勇,赵杰.基于扩展卡尔曼滤波的两轮机器人姿态估计[J].哈尔滨工业大学学报,2007,39(12):1920-1924. 被引量:19

二级参考文献6

  • 1BARSHAN B, DURRANT- WHYTE H F. Inertial Navigation Systems for Mobile Robots [ J ]. IEEE Transactions on Robotics and Automation, 1995, 11 (3) :328- 342.
  • 2BAERVELDT A J, KLANG R. A low - cost and low - weight attitude estimation system for an autonomous helicopter [ C ]// IEEE International Conference on Intelligent Engineering Systems. Budapest:IEEE service center, 1997. 391- 395.
  • 3HAKYOUNG Chung, OJEDA L, BORENSTEIN J. Sensor fusion for mobile robot dead - reckoning with a precision - calibrated fiber optic gyroscope[C]//Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul: Omnipress, 2001. 3588 - 3593.
  • 4YOUNG Soo Suh. Attitude estimation using low cost accelerometer and gyroscope [C]//The 7th Korea-Russia International Symposium on Science and Technology.Ulsan:the University of Ulsan, 2003. 423-427.
  • 5ASHOKARAJ I, SILSON P, TSOURDOS A. Application of an extended Kalman filter to multiple low cost navigation sensors in wheeled mobile robots [C]// Proceedings of IEEE International Conference on Sensors. Orlando:2002. 1660-1664.
  • 6YAN Li, FENG Gao, LIN Ting-qi Jianming Zheng. Study on multi-sensor data fusion for the wheeled mobile robot [ C ]//Proceedings of the Fifth World Congress on Intelligent Control and Automation. Hangzhou:, 2004. 4623-4626.

共引文献18

同被引文献21

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部