期刊文献+

含有p-Laplacian算子的非线性三点边值问题的可解性

Existence of Solution for Nonlinear Third-point Boundery Value Problem with p-Laplacian Operator
下载PDF
导出
摘要 考察含有p-Laplacian算子的非线性三点边值问题的可解性。通过应用Schauder不动点定理,得到了解的存在定理。 This paper considers existence of solution for the n onlinera third-point boundary value problems with p-Laplacian operator.By using Laray-Schauder fixed point theorem, existence theorems of solution are establishted..
作者 侯传霞 李勇
出处 《山东电大学报》 2009年第4期66-67,共2页 Journal of Shandong TV University
基金 山东省自然科学基金(Y2008A28)
关键词 P—Laplacian算子 边值问题 SCHAUDER不动点定理 p-Laplacian operator Boundary value problems Schauder fixed point theorem
  • 相关文献

参考文献6

二级参考文献45

  • 1Qing Liu YAO.Existence,Multiplicity and Infinite Solvability of Positive Solutions for One-Dimensional p-Laplacian[J].Acta Mathematica Sinica,English Series,2005,21(4):691-698. 被引量:12
  • 2[1]Chen S. Zhang Y. Singular boundary value problems on a halfline. J Math Appl Anal, 1995; 195:449-468
  • 3[3]Wang J, Gao W, Lin Z. Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem. Tohoku Math J, 1995;47:327-344
  • 4O' Regan D. Theory of singular boumdary value problems[M]. Singapore:Workl Scientific Press, 1994.1 - 168.
  • 5Taliaferro S D.A nonlinear singular boundary value problem[J] .Nonlinear Anal T M A, 1979,3(4):897-904.
  • 6Zhang Y. Positive solutions of singular sublinear Emden-Fowler boundary value problems[J] .J Math Anal Appl, 1994,185(1) :215- 222.
  • 7Schroder J. Fourth crder two-point boundary value problems:estumates by two-sided bounds[J]. J Nonlinear Anal .T M A, 1984,8(2):107 - 114.
  • 8Gupta C P.Existence and uniquenesa results for the bending of an elastic beam eqaution at resonance[J]. J Math Anal Appl,1988,35(1):208 -225.
  • 9Aftabizadeh A R. Existence and uniqueness theorems for fourth order boundary value problems[J]. J Math Anal Appl, 1966,116(2) :415- 426.
  • 10Usmsni R A. A uniqueness theorem for a boundary value problem[J] .Proc Amer Math Soc,1979,77(2) :329- 335.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部