期刊文献+

利用量子力学势能数据预测温度、压力、盐度和沉积物孔径对甲烷水合物形成和分解的影响 被引量:1

A thermodynamic model based on ab initio intermolecular potential to predict the equilibrium condition of methane hydrate under the influence of temperature,pressure,salinity and capillary force
下载PDF
导出
摘要 介绍一个预测不同温度、压力、盐度和沉积物毛细管孔径条件下甲烷水合物-溶液-气体多相平衡模型。该模型以VanderWaals和Platteeuw热力学模型、量子力学从头算粒子相互作用势能、DMW-92状态方程和Pitzer电解质理论为基础,能在很宽广温压范围内预测温度、压力、盐度和毛细管力对甲烷水合物形成和分解的影响。通过对比本模型的预测结果与实验数据,可知本模型能够准确地预测海水和多孔介质中甲烷水合物的相平衡条件。对于一定盐度下多孔介质中甲烷水合物的形成温压条件的在线计算可浏览:www.geo-chem-model.org/models.htm。 A thermodynamic model is presented for predicting the multi-phase equilibria of methane hydrate,liquid and vapor phases under conditions of different temperature,pressure,salinity and pore sizes.The model is based on Van der Waals-Platteeuw model,angle-dependent ab initio intermolecular potentials,DMW-92 equation of state and Pitzer theory.Comparison with the experimental data shows that this model can predict the equilibrium p-T condition of CH4 hydrate in seawater and porous media with high accuracy.Online calculations of the p-T condition for the formation of methane hydrate at a given salinity and pore sizes of sediments is available on:www.geochem-model.org/models.htm.
出处 《地学前缘》 EI CAS CSCD 北大核心 2009年第6期359-371,共13页 Earth Science Frontiers
基金 国家自然科学基金项目(40537032) 中国科学院主要发展基金项目(kzcx2-yw-124)
关键词 甲烷水合物 量子力学模拟 从头算势能 盐度 多孔介质 形成条件 相平衡 methane hydrate quantum simulation ab initio potential salinity porous sediment forming conditions phase equilibria
  • 相关文献

参考文献96

  • 1Sloan E D. Clathrate Hydrates of Natural Gases[M]. New York: Marcel Decker, 1998: 56-71.
  • 2Lunine J I, Stevenson D J. Clathrate and ammonia hydrates at high-pressure Application to the origin of methane on Titan[J]. Icarus, 1987, 70: 61-77.
  • 3Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microhially mediated gas hydrate capacitor [J]. Earth Planet Sci Lett, 2003, 213:169-183.
  • 4Xu W, Germanovich LN. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach[J]. J Geophys Res, 2006, 111, 1301104, doi: 10. 1029/2004JB003600.
  • 5Parrish W R, Prausnitz J M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Ind Eng Chem Process Des Dev, 1972, 11: 26-35.
  • 6Ng H J, Robinson D B. The measurement and prediction of hydrate formation in liquid hydrocarbon water systems[J]. Ind Eng Chem Fundam, 1976, 15: 293-298.
  • 7Englezos P, Bishnoi P R. Prediction of gas hydrate formation conditions in aqueous electrolyte solutions[J]. AIChE Journal, 1988, 34: 1718-1721.
  • 8Tohidi B, Danesh A, Todd A C. Modelling single and mixed electrolyte solutions and its applications to gas hydrates[J]. Chem Eng Res Des, 1995, 73(A): 464-472.
  • 9Chen G J, Guo T M. A new approach to gas hydrate modeling[J]. Chem Eng J, 1998, 71:145-151.
  • 10Ballard A L, Sloan E D. The next generation of hydrate pre diction: Ⅰ. Hydrate standard states and incorporation of spectroscopy[J]. Fluid Phase Equilibria, 2002, 194-197: 371-383.

同被引文献50

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部