摘要
单图G的r-强边染色是指图的距离不超过r的任意两点可区别的边染色,所谓两点u,v间的距离是指这两个点之间的最短路的长,记为d(u,v).图G的r-强边色数χs′(G,r)表示.本文给出一类联图的2-强边色数的界,并将结论推广到r-强边色数的界.
Let G be a simple graph, for any u,v ∈ V(G) , d(u,v) denotes the distance between u and v. A proper edge coloring of a graph G is called an r - strong edge coloring if for any two distinct vertices u,v V(G) with d ( u, v) ≤ r, we have C (u) ≠ C (v) . The r - strong edge coloring number X's ( G, r) is the minimum number of colors required for an r - strong edge coloring of the graph G. In this paper, we obtain an upper bound for the 2 - strong edge coloring number of a kind of join graph. And we also discussed an upper bound for the r - strong edge coloring number.
出处
《重庆文理学院学报(自然科学版)》
2009年第6期14-16,共3页
Journal of Chongqing University of Arts and Sciences
关键词
联图
r-强边染色
r-强边色数
join graph
r - strong edge coloring
r - strong edge coloring number