期刊文献+

暂态电压失稳模式的主导不稳定平衡点计算 被引量:4

Computation of Controlling Unstable Equilibrium Point Corresponding to Instability Mode of Transient Voltage
下载PDF
导出
摘要 构建了负荷采用三阶感应电动机并联恒阻抗动态模型时电力系统暂态电压稳定分析的数学模型.针对采用牛顿法求取故障后系统电压失稳模式的主导不稳定平衡点(CUEP)存在的初值确定难题,提出了一种实用的解决方案:通过判别给定故障的主导负荷母线,对主导负荷母线以外系统由故障后稳定平衡点处的状态进行戴维南等值,对负荷中感应电动机部分采用其稳态等值电路,再由感应电动机的转矩特性求得CUEP附近的一个点作为迭代初值,以计算CUEP.文中还给出了如何得到更接近CUEP的迭代初值以便更可靠地求得CUEP的方法.IEEE 9节点和39节点系统的计算结果证明该方法可靠有效. This paper proposes a mathematical model for analyzing the transient voltage stability of power systems whose load is presented by a three-order induction motor paralleling constant impedance model, and gives a practical scheme to choose the initial point when the Newton method is used to compute the control'ling unstable equilibrium point (CUEP) corresponding to the instability mode of system voltage. In this scheme, the controlling load bus of a given fault is identified, the Thevenin equivalent circuit is used to represent the rest of. the system in the state of post-disturbance stable equilibrium point, the steady equivalent circuit is adopted to describe the induction motor in a composite load, and a point near the CUEP is obtained based on the torque characteristics of the induction motor and is then taken as the initial iteration point. Moreover, a method to obtain the initial iteration point closer to the CUEP is proposed, by which the CUEP can be computed more reliably. Computation results of the IEEE 9-bus and the 39-bus systems show that the proposed method is reliable and effective.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第11期88-94,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50777021)
关键词 电力系统 暂态电压 电压稳定性 主导不稳定平衡点 感应电动机 牛顿法 power system transient voltage voltage stability controlling unstable equilibrium point induction motor Newton method
  • 相关文献

参考文献10

  • 1Diaz de Leon J A Ⅱ,Taylor C W. Understanding and solving short-term voltage stability problem [ C ] //Proceedings of IEEE Power Engineering Society Summer Meeting. Chicago: [ s. n. ] ,2002:745-752.
  • 2Potamianakis E G,Voumas C D. Short-term voltage instability: effects on synchronous and induction machines [ J]. IEEE Transactions on Power Systems ,2006,21 ( 2 ) : 791-798.
  • 3IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and classification of power system stability [ J]. IEEE Transactions on Power Systems ,2004, 19(2) :1387-1401.
  • 4段献忠,何仰赞,陈德树.电力系统暂态电压稳定的基本概念和仿真分析[J].华中理工大学学报,1995,23(4):21-24. 被引量:16
  • 5薛禹胜,徐泰山,刘兵,厉耀宗.暂态电压稳定性及电压跌落可接受性[J].电力系统自动化,1999,23(14):4-8. 被引量:57
  • 6吴浩,郭瑞鹏,韩祯祥.电力系统微分代数模型的奇异性和暂态电压稳定[J].电力系统自动化,2006,30(13):16-21. 被引量:14
  • 7Chiang H D, Hirsch M, Wu F F. Stability region of nonlinear autonomous dynamic systems [ J ]. IEEE Transactions on Automatic Control, 1988,33( 1 ) : 16-27.
  • 8西安交通大学,清华大学.电子数字计算机的应用-电力系统计算[M].北京:水利电力出版社,1978.
  • 9Sekine Y, Ohtsuki H. Cascaded voltage collapse [ J ]. IEEE Transactions on Power Systems, 1990,5 ( 1 ) : 250- 256.
  • 10林舜江,李欣然,刘杨华.考虑负荷动态模型的在线小干扰电压稳定指标[J].电力系统自动化,2008,32(9):25-29. 被引量:20

二级参考文献32

共引文献97

同被引文献42

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部