摘要
设G=(X,Y,E)是二分图,g,f是定义在V(G)上的正整数值函数,且对任意的x∈V(G)有g(x)<f(x).令G是(mg,mf-1)-图,证明了:①若,g(x)≥1,H是G的任一含有m条边的子图.则G有一个(g,f)-因子分解与H-正交.②若g(x)≥2,H是G的任一含有2m条边的子图,则G有一个(g,f)-因子分解与H2-正交.
Let G = ( X, Y, E) be a bipartite graph and let g and f be two positive integer functions defined on V(G) with g(x) 〈f(x) for each x∈V(G). Let G is (mg, mf-1)-graph. It is proved that ①if g(x)≥1, H is a subgraph of G with m edges, then G has a (g ,f)-factorization orthogonal to H;②if g(x)≥2, H is a subgraph of G with 2m edges, then G has a (g ,f)-faetorization 2-orthogonal to H.
出处
《吉林师范大学学报(自然科学版)》
2009年第4期41-44,共4页
Journal of Jilin Normal University:Natural Science Edition
基金
Liaoning Science of Technology Foundation(20022021)