期刊文献+

二分图上有限制条件的(g,f)-因子分解(英文)

(g,f)-Factorization with constraints in bipartite graphs
下载PDF
导出
摘要 设G=(X,Y,E)是二分图,g,f是定义在V(G)上的正整数值函数,且对任意的x∈V(G)有g(x)<f(x).令G是(mg,mf-1)-图,证明了:①若,g(x)≥1,H是G的任一含有m条边的子图.则G有一个(g,f)-因子分解与H-正交.②若g(x)≥2,H是G的任一含有2m条边的子图,则G有一个(g,f)-因子分解与H2-正交. Let G = ( X, Y, E) be a bipartite graph and let g and f be two positive integer functions defined on V(G) with g(x) 〈f(x) for each x∈V(G). Let G is (mg, mf-1)-graph. It is proved that ①if g(x)≥1, H is a subgraph of G with m edges, then G has a (g ,f)-factorization orthogonal to H;②if g(x)≥2, H is a subgraph of G with 2m edges, then G has a (g ,f)-faetorization 2-orthogonal to H.
作者 杨芳 车向凯
出处 《吉林师范大学学报(自然科学版)》 2009年第4期41-44,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 Liaoning Science of Technology Foundation(20022021)
关键词 二分图 (g f)-因子 正交因子分解 bipartite graph ( g ,f)-factor orthogonal factorization
  • 相关文献

参考文献4

  • 1J A Bondy, U S R Murty. Graph theory with application [ M ]. London:The Macmillan Press, 1976.
  • 2J Folkman, O R Fulkerson. Flows in infinite graphs [J]. J Comb Theory, 1970, (8) : 30 - 44.
  • 3Guizhen Liu,Binhai Zhu. Some problems on factorization with constraints in bipartite graphs [J]. Discrete Applied Math,2003,128:421 - 423.
  • 4Jianfeng Hou, Jihui Wang, Guizhen Liu. ( g, f)-Factors and f-factors with constraints in bipartite graphs [ J ]. Ph. D Thesis, Shandong University, 2006,4,41 (2) :48-51.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部