摘要
In this work we prove that the initial value problem of the Benney-Lin equation ut + uxxx + β(uxx + u xxxx) + ηuxxxxx + uux = 0 (x ∈ R, t ≥0 0), where β 〉 0 and η∈R, is locally well-posed in Sobolev spaces HS(R) for s ≥ -7/5. The method we use to prove this result is the bilinear estimate method initiated by Bourgain.
In this work we prove that the initial value problem of the Benney-Lin equation ut + uxxx + β(uxx + u xxxx) + ηuxxxxx + uux = 0 (x ∈ R, t ≥0 0), where β 〉 0 and η∈R, is locally well-posed in Sobolev spaces HS(R) for s ≥ -7/5. The method we use to prove this result is the bilinear estimate method initiated by Bourgain.
基金
supported by National Natural Science Foundation of China (Grant No.10771223)