期刊文献+

边缘强化的无需重新初始化的水平集分割模型

Level set segmentation model with enhanced boundary and non-reinitialization
原文传递
导出
摘要 对Chan-Vese模型和Li等提出的不需初始化的基于变分的几何活动轮廓模型在水平集框架下的物理机制进行了分析,在考虑两种模型优缺点的基础上,提出一种新的基于水平集框架的图像分割模型.该模型整合了图像边缘的局部信息和区域的全局信息,数值计算过程中水平集不需要重新初始化.为了防止边缘信息深入到分割目标的内部,新模型利用Laplacian修正算子加大边缘信息在方程中的权重.实验表明,与CV模型相比,所提出的新模型分割效果和分割时间与初始轮廓线的位置和形状选取基本无关;在处理噪声图像、灰度值渐进多目标图像和边缘复杂图像等效果也优于CV模型和Li模型. In this paper CV model and the geometric active contour model based on variation provided by Li are analyzed. A new level set model based on PDE is proposed to overcome the drawbacks of these models above - mentioned. The new model combines the local information of edges and the global information of regions, and there is no necessary of re - initialization in numerical computing. Experimental results show that, compared with CV model, the segmentation effect and the running time of the new model are independent of the position and shape of the initial contour. The effect of the improved model was much better than the two models above -mentioned when processing noisy images, multi -object images and images with complex edges.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期798-802,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771036) 福建省高等学校新世纪优秀人才支持计划资助项目(SX2006-40)
关键词 图像分割 边缘强化 水平集方法 Laplacian修正算子 Chan—Vese模型 image segmentation enhanced boundary level set method Laplacian operator Chan - Vese model
  • 相关文献

参考文献10

  • 1Kass M, Witkin A, Terzopoulos D. Snakes : active contour models [ J ]. International Journal of Computer Vision, 1987, 1 (4) : 321- 331.
  • 2Osher S, Sethian J A. Fronts propagating with curvature - dependent speed: algorithms based on Hamilton - Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12- 49.
  • 3Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: a level set approach[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1995, 17(2) : 158 - 175.
  • 4Caselles V, Kimel R, Sapiro G. Geodesic active contours [J]. International Journal of Computer Vision, 1997, 22(1):61 - 79.
  • 5Mumford D, Shah J. Optimal approximation by piece - wise smooths functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5) : 677 - 685.
  • 6Chan T, Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2) : 256 -277.
  • 7李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:125
  • 8刘秀平,常先堂,李治隆.一种基于边缘和区域信息的变分水平集图像分割方法[J].大连理工大学学报,2008,48(5):754-758. 被引量:8
  • 9Li C, Xu C, Gui C, et al. Level set evolution without reinitialization: a new variational formulation [ C ]//IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). San Diego: IEEE, 2005, 1:430 -436.
  • 10Sethian J A. Level set method and fast marching methods: evolving interface in computational geometry, fluid mechanics, com- puter vision, and materials science [ M ]. Cambridge: Cambridge University Press, 1999.

二级参考文献12

  • 1李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001..
  • 2KASS M, WITKIN A, TERZOPOULOS D. Snakes: Active contour models [J]. LICV, 1987, 1(4): 321-331.
  • 3CASELLES V, CATTE F, COLL T, etal. A geometric model for active contours[J]. Numerisehe Mathematik, 1993, 66:1-31.
  • 4MALLADI R, SETHIAN J A, VEMURI B C. Shape modelling with front propagation: A level set approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2):158-175.
  • 5CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours [J]. IJCV, 1997, 22(1):61-79.
  • 6OSHER S, SETHIAN J A. Front propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79 : 12-49.
  • 7CHAN T,VESE L. Active contour without edges [J]. IEEE Transactions on Image Processing, 2001, 10:266-277.
  • 8LI Chun-ming, XU Chen-yang, GUI Chang-feng, et al. Level set evolution without re-initialization: a new variational formulation [C] // IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). San Diego: IEEE, 2005:430-436.
  • 9VEMURI B, CHEN Y. Joint image registration and segmentation [M] // Geometric Level Set Methods in Imaging, Vision, and Graphics. London:Springer, 2003:251-269.
  • 10CHAN T F, SHEN Jian-hong, VESE L. Variational PDE models in image-processing [J]. Notices of the American Mathematics Society, 2003, 50(1) : 14-26.

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部