期刊文献+

具有干扰的捕食与被捕食模型的定性分析 被引量:2

The qualitative analysis of interference with the predatcr-prey model
下载PDF
导出
摘要 目的研究具有干扰的捕食与被捕食模型的全局稳定性及极限环的存在惟一性。方法利用特征值定理,构造Lyapunov函数与张芷芬惟一性定理。结果得到模型正平衡态的局部渐近稳定性及极限环的存在惟一性的充分条件。结论解决了陈兰孙对模型提出的极限环存在及惟一性的猜想。 Aim To study interference with the Predator-prey of model of global stability and the presence of limit cycles. Methods Applying the eigenvalue theory, constructing Liapunov function and the uniqueness theorem of Zhifen. Results The sufficient conditions of the local asympototic stability of equilibrium model, global stability and the uniqueness of the limit cycles are derived. Conclusion Solving the conjecture about the presence of limit cycles by Lansun Chen.
作者 陈斯养 李方
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期921-924,共4页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10871122) 国家自然科学基金资助项目(60671063)
关键词 干扰 全局稳定性 极限环 interference globlestability limit cycles
  • 相关文献

参考文献7

  • 1陈兰孙.数学生态学模型与研究方法[M].北京:科学出版社,1998:114-119.
  • 2HE Y, CHEN Si-yang. The Qualitative Analysis a Class of Two Species Predator-Prey Perturbed Model [ C ] //Proceeding of the 3^rd International Conference on Impulsive Dynamic Systems and Applications,2006:383-385.
  • 3贺云,陈斯养.广义特征方程及正解的存在性[J].云南师范大学学报(自然科学版),2006,26(1):6-10. 被引量:2
  • 4戴国仁.Kolmogorov捕食者一食饵系统的定性分析.应用数学学报,1988,11(4):444-456.
  • 5CAO Xian-tong,CHEN Lan-sun. A note on the uniqueness of limit cycles in two species Predator-prey system [ J]. Ann of Diff Eqs,1986,2(4) :415-417.
  • 6张锦炎.冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,2002.
  • 7ZHANG Zhi-fen. Proof of the uniqueness theorem of limit cycles of generalized Lienard equation [ J ]. Appl Anal, 1986,23:63-76.

二级参考文献5

  • 1张恭庆 林源渠.泛函分析讲义[M].北京:北京大学出版社,1987.226.
  • 2Grove,E. A,Gyori, Ladas. On the characteristic equations for equations with continous and piecewise constant arguments[J]. Radovi Matematicki, 1990a, 5:271-281.
  • 3Gopalsamy,K. Stability and oscillations in Delay differential equations of population dynamics[M]. Dordrecht:Kluwer Academic Publishers, 1992.
  • 4I. Gyori,G. Ladas. Oscillation theory of Delay differentisl equations with applications[M]. New York: Oxford University press, 1992.
  • 5武秀丽,陈斯养,汤红吉.具有多时滞二维Lotka-Volterra捕食系统的渐近性[J].陕西师范大学学报(自然科学版),2001,29(3):27-30. 被引量:3

共引文献11

同被引文献19

  • 1Wang Youbin,Yan Jurang.NECESSARY AND SUFFICIENT CONDITIONS FOR THE OSCILLATION OF A DELAY LOGISTIC EQUATION WITH CONTINUOUS AND PIECEWISE CONSTANT ARGUMENTS[J].Annals of Differential Equations,2005,21(3):435-438. 被引量:4
  • 2潘红卫.一类具相互干扰的Leslie捕食与被捕食系统的定性分析[J].长沙大学学报,2005,19(5):18-20. 被引量:2
  • 3郭红建.一类具有相互干扰的两种群捕食系统[J].信阳师范学院学报(自然科学版),2006,19(3):255-257. 被引量:5
  • 4GOPALSAMY K, LIU Ping-zhou. Persistence and global stability in a population model [ J ]. J Math Anal Appl, 1998,224( 1 ) :59-80.
  • 5LIU Ping-zhou, GOPALSAMY K. Global stability and chaos in a population model with piecewise constant argu- ments [ J ]. Appl Math Comput, 1999,101 ( 1 ) : 63-88.
  • 6GURCAN F, BOZKURT F. Global stability in a popula- tion model with pieeewise constant arguments [ J ]. J Math Anal Appl,2009,360( 1 ) :334-342.
  • 7OZTURK I, BOZKURT F. Stability analysia of a popula- tion model with pieeewise constant arguments [ J ]. Nonlin- ear Analysis : Real World Applications, 2011, 12 ( 3 ) : 1532-1545.
  • 8WANG You-bin, YAN Ju-rang. Necessary and sufficient condition for the global attractivity of the trivial solution of a delay equation with continuous and piecewise constant arguments[J]. Appl Math Lett, 1997,10(5) :91-96.
  • 9JURY E I. Inners and Stability of Dynamic Systems [ M ]. New York: Wiley, 1974.
  • 10YURI A K. Elements of Applied Bifurcation Theory[ M]. New York : Springer-Verlag, 1998.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部