期刊文献+

Web中的社会网络分析技术 被引量:3

The Web Social Network Analysis Technologies
原文传递
导出
摘要 在对当前Web中的社会网络分析技术的相关文献、项目和系统进行分析的基础上,将Web的社会网络分析技术分为以网页为研究对象和以网页内容中的实体为研究对象两类,前者分析了基于链接分析、二分有向图、最大流的三种实现技术,后者从以用户为实体和以网页内容为实体两个方面介绍了社会网络的构建和分析技术,并分析比较了各种分析技术的优缺点,最后指出了今后进一步发展的方向。 Based on the analysis of recent related papers, systems and projects, this paper divides the web social network technologies into two kinds: taking webpage as study object and taking the entity of webpage as study object, the former analyzes technologies based on link analysis, complete bipartite graph and maximum flow, the latter introduces the construction of social network and analysis technologies from taking users as entity and taking webpage content as entity, and comparatively analyzes the advantages and shortcomings of each technology. Finally, it points out the direction of development in future.
作者 齐惠颖
出处 《情报科学》 CSSCI 北大核心 2009年第12期1871-1875,共5页 Information Science
关键词 社会网络分析 链接分析 二分有向图 最大流 实体关系 social network analysis link analysis complete bipartite graph maximum flow entity relation
  • 相关文献

参考文献20

  • 1Wellman Barry ,S D Berkowitz. Social Structures: A Network Approach [M]. New York:Cambridge University Press, 1988: 130-130.
  • 2H. Kautz, B. Selman, and M. Shah. The hidden web [J]. AI Magazine, 1997,18(2): 27 - 35.
  • 3Pasea, M. Acquisition of categorized named entities for web search[D]. In: Proceedings of the Thirteenth ACM conference on Information and knowledge management. New York, ACM Press,2004: 137-145.
  • 4Spertus, E,Sahami, M and Buyukkokten, O. Evaluating similarity measures: a large-scale study in the orkut social network[D]. In Proc. of the 11th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. New York, ACM Press,2005: 678-684.
  • 5J.M.Kleinberg. Authoritative Sources in a Hyperlinked Environment[J], Journal of the ACM,1999,46(5): 604-632.
  • 6Gibson, J. Kleinberg, P. Raghavan. Inferring Web communities from link topology [D]. The 9th ACM Conf. on Hypertext and Hypermedia. New York, ACM Press,1995:225-234.
  • 7M. R. Henzinger, Finding related pages in the World Wide Web [J/OL]. http://google.ethz.ch/CDstore/www8/data/2148/ pdf/pd1.pdf,2009-11 - 17.
  • 8S. Chakrabarti, B.E.Dom, S. R. Kumar, et al.. Mining the Web's link structure [J]. IEEE Computer, 1999, 32 (8): 60- 67.
  • 9S. Chakrabarti, B.E.Dom, P. Raghavan, et al.. Automatic resource compilation by analyzing hyperlink structure an associated text [J]. Computer Networks and ISDN Systems 1998,30(1-7): 65-74.
  • 10Noriko Imafuji, Masaru Kitsuregawa. Effects of Maximum Flow Algorithm on Identifying Web Community [D]. Proceedings of the 4th international workshop on Web information and data management. New York, ACM Press,2002:43- 48.

同被引文献40

  • 1廖小琴,刘虹,孙建军.链接网络与核心节点评价指标研究综述[J].情报杂志,2012,31(5):166-171. 被引量:5
  • 2杨光.链接分析在企业竞争情报活动中的应用[J].图书情报工作,2005,49(1):19-21. 被引量:17
  • 3田宏,万果锋.一种新的网络核心挖掘方法在情报分析中的应用[J].情报学报,2011,30(2):212-218. 被引量:3
  • 4高琰,谷士文,唐琎.基于链接分析的Web社区发现技术的研究[J].计算机应用研究,2006,23(7):183-185. 被引量:17
  • 5Heidemann J, Klier M, Probst F. Identifying key users in online social networks: A PageRank based approach [ C ]/! Proceedings of ICIS 2010. 2010:79.
  • 6Yang Christopher C, Tang XtmNing. Estimate user influence in the MedHelp social network [ J]. IEEE Intelligent Sys- tems, 2012,27(5) :44-50.
  • 7Tian Zhu, Bai Wang, Bin Wu, et al. Topic correlation and individual influence analysis in online forums [ J]. Experts Systems with Applications, 2012,39 (4) :4222-4232.
  • 8Anand Rajaraman, Jeffrey Ullman. Minning of Massive Data- sets[M]. New York: Cambridge University Press, 2011:145-182.
  • 9Jung-Yi Jiang, Shiang-Chi Tsai, Shie-Jue Lee. FSKNN: Multi-label text catergorization based on fuzzy similarity and k nearest neighbors [ J ]. Experts Systems with Appli- cations, 2012,39(3 ) :2813-2821.
  • 10Kempe D, Kleinberg J, Tardos 1:. Maximizing the spread of influence through a social network [ C ]/! Proceedings of the 9th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining. 2003:137-146.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部