摘要
本文重新考虑了随机Solow模型,在Merton(1975)模型的条件下,证明出描述模型的随机微分方程的解为正值,这补充了Merton的结果.利用随机微分方程平凡解的指数不稳定性并结合Merton的结果,得出资本与劳动的比率或者呈现稳定(渐近)分布,或者呈指数增长.在这些结果中,劳动力供给与资本积累的波动起着重要作用.
The paper reconsiders the continuous-time stochastic Solow model and proves that the solution of the stochastic differential equation that characterizes the model is positive under the conditions of Merton's (1975) model, which fills a gap of his result. By the trivial solution's exponential instability of stochastic differential equations and combining with the previous Merton's result, we find the capital/labor ratio will show the steady-state (or asymptotic) distribution or exponential growth. In these results, variances of population growth and capital accomulation play importantroles.
出处
《应用概率统计》
CSCD
北大核心
2009年第6期571-577,共7页
Chinese Journal of Applied Probability and Statistics
关键词
指数不稳定
稳定状态分布
内生增长
平凡解
Exponential instability, steady-state distribution, endogenous growth, trivial solution.