期刊文献+

连续随机Solow模型的渐近性质 被引量:3

Some Asymptotic Properties of the Continuous-Time Stochastic Solow Model
下载PDF
导出
摘要 本文重新考虑了随机Solow模型,在Merton(1975)模型的条件下,证明出描述模型的随机微分方程的解为正值,这补充了Merton的结果.利用随机微分方程平凡解的指数不稳定性并结合Merton的结果,得出资本与劳动的比率或者呈现稳定(渐近)分布,或者呈指数增长.在这些结果中,劳动力供给与资本积累的波动起着重要作用. The paper reconsiders the continuous-time stochastic Solow model and proves that the solution of the stochastic differential equation that characterizes the model is positive under the conditions of Merton's (1975) model, which fills a gap of his result. By the trivial solution's exponential instability of stochastic differential equations and combining with the previous Merton's result, we find the capital/labor ratio will show the steady-state (or asymptotic) distribution or exponential growth. In these results, variances of population growth and capital accomulation play importantroles.
出处 《应用概率统计》 CSCD 北大核心 2009年第6期571-577,共7页 Chinese Journal of Applied Probability and Statistics
关键词 指数不稳定 稳定状态分布 内生增长 平凡解 Exponential instability, steady-state distribution, endogenous growth, trivial solution.
  • 相关文献

参考文献4

  • 1Mao, X., Stochatic Differential Equations and Applications, Horwood, Chichester, 1997.
  • 2Merton, R., An asymptotic theory of growth under uncertainty, Review of Economic Studies, 42(1975), 375-393.
  • 3Solow, R.M., A contribution to the theory of economic growth, Quarterly Journal of Economies, 70(1956), 65-94.
  • 4Oksendal, B., Stochastic Differential Equations, An Introduction with Applications, Fourth edition, Springer-Verlag, Berlin, 1995.

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部