期刊文献+

河流鱼类产卵场紊动能计算与分析 被引量:7

Turbulent kinetic energy calculation and analysis in fish spawning ground
下载PDF
导出
摘要 通过对鱼类产卵场地形分析,认为水流能量损失是鱼类产卵场形成的重要原因之一,这种能量损失主要是由于特殊河道地貌形成的水流紊动而产生的。在此基础上探索性地推导了考虑这种河道水流能量损失的明渠非恒定流方程。以中华鲟为例,对产卵场河段进行了三维水流数值模拟,计算了产卵河段紊动能的分布,探讨了中华鲟产卵行为与水流紊动之间的关系,结果表明产卵区因紊动产生的能量损失明显大于非产卵区。以期为保护中华鲟和其他鱼类产卵场水力学环境提供参考。 Basing on the analysis of fish spawning ground's topography characteristics,the paper pointed out that flow-energy loss caused by turbulence of special riverway physiognomy is one of the important forming causes of fish spawning sites. Deduction of unsteady open channel flow equations which considers the special flow-energy loss was carried out. The special flow-energy loss deduced by the equation can be expressed by turbulent kinetic energy. Take Chinese sturgeon for example,the turbulent kinetic energy distributions were calculated on the basis of 3-D numerical simulation to the spawning site and then we discussed the relation between Chinese sturgeon spawning behavior and turbulent kinetic energy. The results show that,because of the turbulence,the flow-energy loss of spawning regions is much higher than that of non-spawning regions. This paper could provide reference for protecting the hydraulic environment of Chinese sturgeon and other fishes.
出处 《生态学报》 CAS CSCD 北大核心 2009年第12期6359-6365,共7页 Acta Ecologica Sinica
基金 国家自然科学基金重大资助项目(30490235)
关键词 鱼类产卵场 紊动能 中华鲟 fish spawning ground turbulent kinetic energy Chinese sturgeon
  • 相关文献

参考文献17

  • 1Wheston J M, Pastemack G B, Merz j E. Spawning habitat rehabilitation Ⅰ. Conceptual approach and methods. International Journal of River Basin Management, 2004, 2 (1):3--20.
  • 2Crespin D E Billy V, Usseglio-polaterA P. Traits of brown trout prey in relation to habitat characteristics and benthic invertebrate communities. Journal of Fish Biology ,2002,60 (3) :687 -- 714.
  • 3Yi Bolu, Yu Zhitang Liang Zhishen. Gezhouba Water Control Project and Four Famous Fishes in Yangtze River. Wuhan, China: Hubei Science and Technology Press, 1988.
  • 4Tritico H M, Hotchkiss R H. Unobstructed and obstructed turbulent flow in gravel bed rivers. Journal of Hydraulic Engineering, 2005, 131 (8) : 635 -- 645.
  • 5Shamloo H, Rajaratnam N, Katopodis C. Hydraulics of simple habitat structures. Journal of Hydraulic Research, 2001,39 --4, 351 --366.
  • 6Shields F D, Morin N, Cooper C. Large woody debris structures for sand-bed channels. Journal of Hydraulic Engineering, 2004, 130 (3), 208 -- 217.
  • 7Moir H J, Soulsby C, Youngson A. Hydraulic and sedimentary characteristics of habitat utilized by Atlantic salmon for spawning in the Gimock Burn, Scotland. Fisheries Management and Ecology, 1998, 5 (3) :241 -- 254.
  • 8Baumgartner N, Waringer A, Waringer J. Hydraulic microdistribution patterns of larval fire salamanders (Salamandra salamandra salamandra) in the Weidlingbach near Vienna, Austria. Freshwater Biology, 1999, 41 ( 1 ) :31 -- 41.
  • 9Biggs B J F, Goringd G, Nikora V I. Subidy and Stress Responses of Stream Periphyton to Gradients in Water Velocity as a Function of Community Growth Form. Journal of Phycology, 1998, 34 (4) :598 -- 6071.
  • 10Power J H1 Simulations of the effect of advective-diffusive processes on observations of plankton abundance and population rates. Journal of Plankton Research, 1996, 18(10):1 881--1 896.

同被引文献63

引证文献7

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部