期刊文献+

餐厨垃圾发酵生产乳酸的工艺优化 被引量:9

Process optimization for lactic acid production from kitchen waste
下载PDF
导出
摘要 为提高餐厨垃圾发酵生产乳酸的效率,采用Plackett-Burman和中心复合两种统计试验方法对影响发酵的因素进行初筛和优化.Plackett-Burman实验的结果表明,影响乳酸发酵的正向显著性因素有乳酸菌TD175、糖化酶、吐温80、纤维素酶;灭菌是负显著性因素.通过中心复合试验设计,确定最佳发酵工艺:乳酸菌接种量6.6%,糖化酶160U/g,纤维素酶60U/g,吐温800.08%,温度45℃.最佳工艺条件下发酵40h,乳酸产量能达到66.13g/L,每克干垃圾产乳酸0.53g.餐厨垃圾的乳酸发酵无需灭菌、无需额外营养物,具有良好的经济效益和应用前景. Plaekett- Burman and central composite designs were employed to screen and optimize the significant factors for the enhancement of lactic acid production from kitchen waste. The results of Plackett - Burman experiments showed that lactic acid bacteria TD175, glucoamylase, tween80 and cellulase were the positive significant factors, while sterilization affected the fermentation negatively. Optimum conditions for the lactic acid fermentation of kitchen waste were determined by central composite design as follows : TD175 6.6% , glu eoamylase 160 U/g, cellulase 60 U/g, Tween -80 0. 08% and temperature 45 ℃. Under these conditions, lactic acid concentration in the fermentation broth reached 66. 13 g/L after 40 h, and about 0. 53 g lactic acid was produced from one gram of dry kitchen waste. Lactic acid production from kitchen waste need not sterilization operation and extra nutrient, thus it is very economical.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第10期58-63,共6页 Journal of Harbin Institute of Technology
基金 国家高技术研究发展计划资助项目(863-2008AA06Z34) 国家自然科学基金资助项目(50978028)
关键词 餐厨垃圾 乳酸发酵 优化 PLACKETT-BURMAN设计 中心复合设计 kitchen waste lactic acid fermentation optimization Plackett-Burman design central composite design
  • 相关文献

参考文献10

  • 1DIGGELMAN C, HAM R K. Household food waste to wastewater or to solid waste? That is the question [ J]. Waste Management & Research, 2003, 21: 501- 514.
  • 2WANG Q, WANG X, WANG X, et al. Bioconvesion of kitchen garbage to lactic acid by two wild strains of Lactobacillus species [ J ]. Journal of Environmental Science and Health, Part A, 2005, 40:1951 -1962.
  • 3WANGX M, WANGQ H, REN N Q, et al. Lactic acid production from kitchen waste with a newly characterized strain of Lactobacillus plantarum[ J]. Chemical and Biochemical Engineering Quarterly, 2005, 19: 383 - 389.
  • 4ADSUL M G, VARMA A J, GOKHALE D V. Lactic acid production from waste sugarcane bagasse derived cellulose [ J]. Green Chemistry, 2007, 9 : 58 -62.
  • 5HOFVENDAHL K, HAHN -HaGERDAL B. Factors affecting the fermentative lactic acid production from renewable resources[ J ]. Enzyme and Microbial Technology, 2000, 26 : 87 - 107.
  • 6YUN J S, WEE Y J, OH H, et al. Effect of temperature, pH and addition of minerals in lactic acid fermentation using Enterococcus faecalis RKY1 [ J ]. Korean Journal of Microbiology and Biotechnology, 2002, 30 (3): 258-263.
  • 7LIU C, LIU Y, LIAO W, et al. Simultaneous production of nisin and lactic acid from cheese whey [ J ]. Applied Biochemistry and Biotechnology, 2004, 113 - 116 : 627 - 638.
  • 8WANG Q, WANG X, WANG X, et al. Glucoamylase production from food waste by Aspergillus niger under submerged fermentation [ J ]. Process Biochemistry, 2008, 43 : 280 - 286.
  • 9GUNTER K L, SUTHERLAND J W. An experimental investigation into the effect of process conditions on the mass concentration of cutting fluid mist in turning [J]. Journal of Cleaner Production, 1999, 7 (5): 341 - 350.
  • 10VANNECKE C, BARE S. An experimental design approach to the optimization of a flow injection analysis method for glycine [ J ]. Journal of Pharmaceutical and Biomedical Analysis, 1999, 18 ( 6 ) : 963 - 973.

同被引文献160

引证文献9

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部