期刊文献+

求解单变量无约束优化问题的一类新割线法(英文)

New Secant-Type Methods for Univariate Unconstrained Optimization
下载PDF
导出
摘要 本文基于分式逼近提出了一类求解单变量无约束优化问题的新割线法,给出并证明了该方法的收敛阶是(^(1/2)+1).并进一步对新方法的性能进行了分析,给出了新方法、经典的牛顿法和其他修正的割线类方法解单变量无约束优化问题的数值实验.理论和数值结果均表明新的割线法是有效的. This paper presents a class of new secant methods for solving nonlinear, univariate and unconstrained optimization problems based on the fractional approximation. Convergence analysis shows the proposed methods to be (√2+ 1)-order convergent. The performance of the new methods is analyzed. In comparison with the classical Newton method and modified secant-type methods, numerical results indicate that new proposed methods are effective.
出处 《运筹学学报》 CSCD 2009年第4期45-55,共11页 Operations Research Transactions
基金 supported by the Natural Science Foundation of Jiangsu Province(BK2006184)
关键词 运筹学 无约束最优化 割线法 牛顿法 收敛阶 Operations research, unconstrained optimization, secant methods, Newton method, order of convergence
  • 相关文献

参考文献15

  • 1Luenberger D.G. Linear and Nonlinear Programming[M]. (second ed.) Addison-Wesley Publishing Company, Inc., 1984.
  • 2Sun W., Yuan Y. Optimization Theory and Methods[M]. Series: Springer Optimization and Its Applications, 2006.
  • 3Kahya E. A class of exponential quadratically convergent iterative formulae for unconstrained optimization[J]. Appl. Math. Comput., 2007, 186: 1010-1017.
  • 4Rao M.V.C., Bhat N.D. A new unidimensional search scheme for optimization[J]. Computers Chemical Engineering, 1991, 15: 671-674.
  • 5Kahya E., Chen J. A modified Secant method for unconstrained optimization[J]. Appl. Math. Comput., 2007, 186:1000-1004.
  • 6C. Li Tseng. A Newton-type univariate optimization algorithm for locating the nearest extrelnum[J]. European Journal of Operational Research, 1998, 105: 236-246.
  • 7Kahya E. Modified Secant-type methods for unconstrained optimization[J]. Appl. Math. Comput., 2006, 181: 1349-1356.
  • 8Kahya E. A new unidimensional search method for optimization: Linear interpolation method[J]. Appl. Math. Comput., 2005, 171: 912-926.
  • 9Homeier H.H.H. On Newton-type methods with cubic convergence[J]. J. Comput. Appl. Math., 2005, 176: 425-432.
  • 10Kou J., Li Y., Wang X. On modified Newton methods with cubic convergence[J]. Appl. Math. Comput., 2006, 176: 123-127.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部