期刊文献+

基于高斯混合HMM雷达目标识别方法

Method for Radar Target Recognition Based on Gaussian Mixture HMM
下载PDF
导出
摘要 采用Relax算法提取雷达目标参数,选择散射点强度及其相对位置作为模式识别特征;用高斯混合模型来逼近模式特征的概率分布密度;通过隐马尔可夫状态描述雷达目标不同方位之间的概率关联。研究了飞机类目标的识别问题。实测数据的计算机仿真结果表明,当训练数据与识别测试数据取之完全不同数据段时,三类飞机的100次识别的平均识别率分别为76%,74%,83%。 The Relax algorithm is utilized to extract the parameters of radar targets. The relative location and the amplitude of point scattering are chosen as the features of pattern recognition; Probability relationship in different orientation of radar targets is associated to the states of HMMs. The research into the recognition of airplane-like targets is made with the technique above; While the observation state probability of HMM is simulated by a Gaussian mixture model. Computer simulations with radar data show that the averaged recognition rate of three types of airplane reach 76% (Yake-42), 74%(An-26),83% (Cessna) respectively, in 100 simulations, with the training data and recognition data coming from different data segments.
出处 《机电一体化》 2009年第10期69-72,共4页 Mechatronics
关键词 雷达目标识别 高斯混合模型 HMM RELAX算法 radar target recognition Gaussian mixture model HMM Relax algorithm
  • 相关文献

参考文献8

  • 1王晓丹,王积勤.雷达目标识别技术综述[J].现代雷达,2003,25(5):22-26. 被引量:47
  • 2ZHOU D,LIU G,WANG J.Spatio-temporal target identification method of high-range resolution radar[J].Pattern Recognition,2000,(33):1-4.
  • 3JUANG BIING HWANG,LAWRENCE RABINER.Mixture Autoregressive Hidden Markov Models for Speech Signals[J].IEEE Transactions on Acoustics,Speech,and Signal Processing ASSP,1985(30):1404-1413.
  • 4RABINER L IL Atutorial on hidden markov models and selected applications in speech recognition[J].IEEE,1989,77(2),262-270.
  • 5陆传赉.系统工程中的随机过程[M].北京:电子工业出版社,2000.
  • 6裴炳南,保铮.基于目标散射中心和HMM分类的多视角雷达目标识别方法[J].电子学报,2003,31(5):786-789. 被引量:12
  • 7LI J.P.Stoica,Efficient mixed-spectrum estimation with applications to target feature etraction[J]IEEE Trans.SP,1996,44(2):281-295.
  • 8XING M,BAO B,PEI B.Properties of high-resolution range profiles[J].Optical Engineering,2002,41(2):1-10.

二级参考文献16

  • 1文树梁.基于双距离像的雷达目标识别技术[J].现代雷达,1996,18(1):15-21. 被引量:11
  • 2黄为倬.目标识别与逆合成孔径雷达[J].现代雷达,1988,10(6):108-122.
  • 3庄钊文 柯有安.频域目标识别的极大极小法[A]..西安:第二届信号处理年会论文集CCSP-88[C].,1988..
  • 4Bell M B, Gyubbs R A. JEM modeling and measurement for radar target identification. IEEE Trans on AES, 1993,29(1) :12~13.
  • 5Blaricum M L Van, Mittra R. A technique for extracting the poles and residues of a system directly from its transient response. IEEE Trans. on AP,1975,23(6):777~781.
  • 6Jain V K, et al. Rational modeling by Pencil-of-Function method. IEEE Trans. on ASSP,1983, 31(3): 564~573.
  • 7Hua Y B, Sarkar T K. Generalized Pencil-of-Function method for extracting poles of an EM system from its transient response. IEEE Trans on AP, 1989,37(2).
  • 8Chuang C W, Moffat D L. Natural resonance of radar target via Prony's method and target discrimination. IEEE Trans. on AES,1976,12(5):583~589.
  • 9Brittingham J N, et al. Pole extraction from real-frequency information. Proceedings of IEEE, 1980, 68(2):263 ~273.
  • 10Ksienski A A . Pole and residue extraction from measured data in the frequency domain using multiple data set. Radio Science, 1985,20( 1 ).

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部