期刊文献+

面向有限元分析的三角网格迭代优化 被引量:6

Iterative Optimization of Triangle Meshing for FEM Analysis
下载PDF
导出
摘要 从逆向工程或者简单离散实体模型得到的网格质量较差,通常不能直接用于有限元分析,为此提出一种迭代优化算法.首先对给定网格进行细分得到足够的自由度,以改变网格的几何和拓扑;然后在误差允许的范围内,通过简化和规则化来提高网格质量.该过程不断迭代,直到网格质量满足分析要求或者达到迭代上限.实验结果表明,该算法既能灵活地控制网格属性,又能有效地提高网格质量. The mesh generated by reverse engineering or simple tessellations of solid models usually cannot be directly applied to analysis due to bad quality. An iterative optimization algorithm is proposed. Mesh is first refined to get enough degree of freedom for changing topology and geometry. Then within a given tolerance the mesh quality is improved by simplification and regularization. This progress is iterated until the mesh quality meets the requirement or a given maximum number of iterations are reached. The experimental results are given to demonstrate the flexibility and effectiveness of the proposed algorithm.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第12期1715-1721,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2007AA01Z311 2007AA04Z1A5) 教育部博士点基金(20060335114) 浙江省科技计划项目(2007C21006 2009C31034)
关键词 有限元 网格优化 网格细分 网格简化 网格规则化 finite element mesh optimization mesh subdivision mesh simplification mesh regularization
  • 相关文献

参考文献15

  • 1Alliez P, Meyer M, Desbrun M. Interactive geometry remeshing [J]. ACM Transactions on Graphics, 2002, 21 (3) : 347-354.
  • 2Sifri O, Sheffer A, Gotsman C. Geodesic-based surface remeshing [C]//Proceedings of the 12th International Meshing Roundtable, Santa Fe, 2003:189-199.
  • 3Alliez P, de Verdiere E C, Devillers O, et al. Isotropic surface remeshing [C]//Proceedings of Shape Modeling International, Seoul, 2003:49-58.
  • 4Botsch M, Kobbelt L. A remeshing approach to multiresolution modeling [C]//Proceedings of Eurographics Symposium on Geometry Processing, Nice, 2004:189-196.
  • 5Hoppe H, DeRose T, Duchamp T, et al. Mesh optimization [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Anaheim, 1993: 19-26.
  • 6李基拓,陆国栋.基于边折叠和质点弹簧模型的网格简化优化算法[J].计算机辅助设计与图形学学报,2006,18(3):426-432. 被引量:16
  • 7Bechet E, Cuilliere J C, Trochu F. Generation of a finite element MESH from stereolithography (STL) files [J]. Compute Aided Design, 2002, 34(1): 1-17.
  • 8Date H, Kanai S, Kishinami T, et al, High quality and property controlled finite element mesh generation from triangular meshes using the multiresolution technique [J]. Journal of Computing and Information Science in Engineering, 2005, 5(4): 266-276.
  • 9杨晓东,赵建,申长雨.面向有限元分析的实体表面网格模型的优化[J].计算机应用与软件,2006,23(8):103-105. 被引量:2
  • 10刘泗岩,廖文和,刘浩.基于内角余弦和的三角形正则度评定与网格优化[J].机械科学与技术,2007,26(4):420-423. 被引量:9

二级参考文献31

  • 1张必强,邢渊,阮雪榆.基于特征保持和三角形优化的网格模型简化[J].上海交通大学学报,2004,38(8):1373-1377. 被引量:18
  • 2李桂清,马维银,鲍虎军.带尖锐特征的Loop细分曲面拟合系统[J].计算机辅助设计与图形学学报,2005,17(6):1179-1185. 被引量:22
  • 3周晓云 刘慎权.基于特征角准则的多面体模型简化方法[J].计算机学报,1996,19:217-223.
  • 4李现民.三角网格简化及等值面抽取技术[博士学位论文].中国科学院计算技术研究所,2001..
  • 5Hoppe H.Progressive meshes[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New Orleans,1996:99-108
  • 6Garland M,Heckbert P.Surface simplification using quadric error metrics[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,1997:209-216
  • 7Alliez P,Meyer M,Debrun M.Interactive geometry remeshing[J].ACM Transactions on Graphics,2002,21(3):347-354
  • 8Hormann K,Labsik U,Greiner G.Remeshing triangulated surfaces with optimal parameterizations[J].Computer-Aided Design,2001,3(11):779-788
  • 9Rassubeux A,Villon P,Savignat J M,et al.Surface remeshing by local Hermite diffuse interpolation[J].International Journal for Numerical Methods in Engineering,2000,49(1/2):31-49
  • 10Surazhsky V,Gotsman C.Explicit surface remeshing[C]//Proceedings of Eurographics Symposium on Geometry Processing,Aachen,2003:17-28

共引文献79

同被引文献76

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部