期刊文献+

基于核函数粒子滤波和多特征自适应融合的目标跟踪 被引量:12

Kernel-Based Particle Filter for Target Tracking with Adaptive Multiple Features Fusion
下载PDF
导出
摘要 经典粒子滤波及其改进算法在观测模型与真实情况存在偏差时会导致滤波发散,针对这一问题,提出一种核函数粒子滤波算法.该算法根据目标状态与粒子状态之间的距离,利用核函数产生权值对粒子进行二次加权,根据粒子的二次加权结果进行粒子重采样;以改进的粒子滤波算法为框架,提出了一种自适应多特征融合目标跟踪方法,利用相似性度量动态地评价特征对目标与背景的区分能力,并自适应地计算特征融合权重,以适应目标跟踪过程中目标与背景的变化,提高目标跟踪的鲁棒性.实验结果表明,文中提出的目标跟踪方法比经典粒子滤波目标跟踪方法具有更强的抗干扰性能和较高的跟踪精度. The particle filtering has been extensively used for visual tracking due to its flexibility.However the conventional particle filtering and its improved variants usually diverge when the measurement model is not accurate enough. To address this problem, a kernel-based particle filter algorithm is proposed. The algorithm reweighs the particles by weights which are produced by kernel function with the distance between target state and particles, and the particles are resampled according to the resultant weights. With the above improved particle filter algorithm, an adaptive multiple features fusion target tracking method is proposed. The proposed tracking method dynamically assesses the discriminability of each feature with respect to foreground to background separability and adaptively computes the feature's fusion weight by some similarity measure. Experimental results show that the proposed tracking method is superior over the conventional particle filter based tracking methods.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第12期1774-1784,共11页 Journal of Computer-Aided Design & Computer Graphics
基金 中国博士后科学基金项目特别资助(200801493) 中国博士后科学基金项目一等资助(20080430223) 安徽省自然科学基金(090412043)
关键词 目标跟踪 核函数 粒子滤波 特征融合 target traeking kernel funetion particle filter features fusion
  • 相关文献

参考文献18

  • 1Isard M, Blake A. Condensation-conditional density propagation for visual tracking [J]. International Journal of Computer Vision, 1998, 29(1):5-28.
  • 2Khan Z, Balch T, Dellaert F. MCMC based particle filtering for tracking a variable number of interacting targets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1819.
  • 3Wang Q C, Liu J L. The improved particle filter for object tracking [C]//Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, 2006: 10275- 10279.
  • 4Rathi Y, Vaswani N, Tannenbaum A, et al. Tracking deforming objects using particle filtering for geometric active contours [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1470-1475.
  • 5Gilks W R, Berzuini C. Following a moving target--Monte Carlo inference for dynamic Bayesian models [J]. Journal of the Royal Statistical Society: Series B, 2001, 63 (1) : 127- 146.
  • 6Maggio E, Cavallaro A. Hybrid particle filter and mean shift tracker with adaptive transition model [C]//Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Dalian, 2005: Ⅱ221-Ⅱ224.
  • 7Li P H, Zhang T W, Pece A E C. Visual contour tracking based on particle filters [J]. Image and Vision Computing, 2003, 21(1): 111-123.
  • 8Shen C H, Brooks M J, Hengel A V. Augmented particle filtering for efficient visual tracking [C]//Proceedings of the IEEE International Conference on Image Processing, Genova, 2005, 3: 856-859.
  • 9Kwok N M, Fang G, Zhou W Z. Evolutionary particle filter: re-sampling from the genetic algorithm perspective [C]//Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Singapore, 2005:2935-2940.
  • 10Comaniciu D, Ramesh V, Meer P. Kernel based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligenee, 2003, 25(5): 564-577.

同被引文献100

  • 1周良毅,王智.基于遮挡变量的多视角目标融合追踪算法[J].计算机研究与发展,2011,48(S2):57-64. 被引量:2
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3曹丹华,邹伟,吴裕斌.基于背景图像差分的运动人体检测[J].光电工程,2007,34(6):107-111. 被引量:36
  • 4Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking [J]. IEEE Trans on Signal Processing, 2002,50(2 ) :174-188.
  • 5Itti L, Koch C, Niebur E. Model A of Saliency-Based Visual Attention for Rapid Scene Analysis[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 11 ) : 1254 - 1259.
  • 6Zhang Longfei, Cao Yuanda, Zhang Mingjie, et al. Object Tracking Based on Visual Attention Model and Particle Filter[ J ]. International Journal of Information Technology,2005,11 ( 9 ) : 109 - 118.
  • 7Zhang G, Yuan Z, Zheng N, et al. Visual Saliency Based Object Tracking[ C ]//Proceedings of ACCV ( 2 ). 2009 : 193 - 203.
  • 8Sidibe D, Foil D, Meriaudeau F. Using Visual Saliency for Object Tracking with Particle Filters[ C ]//18th European Signal Processing Conference (EUSIPCO), Aalborg, Denmark, August 2010.
  • 9Itti L, Koch C. Computational modeling of visual attention[J]. Nature Reviews Neuroscience, 2001,2 ( 3 ) : 194 - 230.
  • 10Basu M. Gaussian-based edge-detection methods-a survey [ J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2002,32 ( 3 ) :252-260.

引证文献12

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部