期刊文献+

线性规划的最钝角松弛算法 被引量:2

A Most-obtuse-angle Relaxation Algorithm for Linear Programming
下载PDF
导出
摘要 本文提出一个基于最钝角原理的松弛算法求解线性规划问题。该算法依据最钝角原理略去部分约束得到一个规模较小的子问题,用原始单纯形算法解之;再添加所略去的约束恢复原问题,若此时全部约束条件均满足则已获得一个基本最优解,否则用对偶单纯形算法继续求解。初步的数值试验表明,新算法比传统两阶段单纯形算法快得多。 Based on the most-obtuse-angle principle, a relaxation algorithm is proposed in this paper to solve linear programming problems. Some constraints are selected, and omitted according to the most-obtuse-angle principle. The smaller problem is solved with the simplex method. Then the omitted constraints are added to restore the original problem. If all the constraints are satisfied, then a basic optimal solution is reached. In the other case, the dual simplex method is used to obtain the basic optimal solution. Our preliminary computational tests demonstrate that the new algorithm is much faster than the conventional two-phase simplex algorithm.
出处 《运筹与管理》 CSCD 北大核心 2009年第6期7-10,共4页 Operations Research and Management Science
基金 国家自然科学基金资助项目(10871043) 教育部博士点基金资助项目(20060286005)
关键词 线性规划 单纯形法 松弛 最钝角 主元标 linear programming simplex method relaxation problem the most obtuse angle pivoting index
  • 相关文献

参考文献8

  • 1Pan P Q. Practical finite pivoting rules for the simplex method[ J]. OR Sepektrum, 1990, (12) : 219-225.
  • 2Pan P Q, Pan Y. A phase-1 approach to the generalized simplex algorithm[ J]. Computers and Mathematics with Applications, 2001, (41) : 1455-1464.
  • 3Stojkovic N V, Stanimirovic P S. Two direct methods in linear programming[J]. European Journal of Operational Research, 9001, (131) : 417-439.
  • 4Trigos F, Frausto-Solis Lopez R R. A simplex cosine meth od for solving the klee-minty cube[ J] . Advances in Simulation System Theory and Systems Engineering 2002, 70 : 27-32.
  • 5Pan P Q. A dual projective pivot algorithm for linear programming[J] . Computational Optimization and Applications, 2004, (29) : 333-344.
  • 6Junior H V, Lins M P E. An improved initial basis for the simplex algorithm[ J] . Computers and Operations Research, 2005, (32) : 1983-1993.
  • 7Corley H W, Jay Rosenberger, Wei-Chang Yeh, et al. The cosine simplex algorithm[J] . Int. J. Adv. Manuf. Technol, 2005.
  • 8张建中,许绍吉.《线性规划》[M].科学出版社,1998.

同被引文献12

  • 1许万蓉.线性规划[M].北京:北京理工大学出版社,1990.
  • 2ARSHAM H. Initialization of the simplex algorithm: An artificial-free approach [J]. SIAM Review, 1997, 39 (4): 736 -744.
  • 3ENGE A, HUHN P. A counterexample to H Arsham's "Initialization of the simplex algorithm An artificial-free approach" [J]. SIAM Review, 1998, 40 (4), 1-6.
  • 4TRIGOS F, FRAUSTO-SOLIS J, RIVERA-LOPEZ R. A simplex-cosine Method for solving hard linear problems [J]. Advances in Simulation, Systems Theory and Systems Engineering, WSEAS Press, 2002, 70 (1) : 27-32.
  • 5YEH WEI-CHANG, Corley H W. A simple direct cosine simplex algorithm [J]. Applied Mathematics and Computation, 2009, 214 (1): 178-186.
  • 6DONGARRA J, GOLUB G, GROSSE E, et al. Netlib and NA-Net: Building a scientific computing community [J]. IEEE Annals of the history of computing, 2008, 30 (2) : 30-41.
  • 7BIXBY R E, CERIA S, MCZEAL C M, et al. An updated mixed integer programming library: MIPLIB 3.0 [J]. Optima, 1998, 54 (1): 12-15.
  • 8梁平,孙艳华,魏德宾,张相斌.A New Method for Achieving an Initial Regular Solution of a Linear Programming[J].Northeastern Mathematical Journal,2008,24(1):31-34. 被引量:3
  • 9金婷,潘平奇.一个新的最钝角单纯形算法[J].淮北煤炭师范学院学报(自然科学版),2010,31(2):14-18. 被引量:1
  • 10高培旺.关于求线性规划初始正则解的一个新方法的注记[J].徐州工程学院学报(自然科学版),2012,27(2):1-4. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部