期刊文献+

A maximum a posteriori super resolution algorithm based on multidimensional Lorentzian distribution

A maximum a posteriori super resolution algorithm based on multidimensional Lorentzian distribution
原文传递
导出
摘要 This paper presents a threshold-free maximum a posteriori (MAP) super resolution (SR) algorithm to reconstruct high resolution (HR) images with sharp edges. The joint distribution of directional edge images is modeled as a multidimensional Lorentzian (MDL) function and regarded as a new image prior. This model makes full use of gradient information to restrict the solution space and yields an edge-preserving SR algorithm. The Lorentzian parameters in the cost function are replaced with a tunable variable, and graduated nonconvexity (GNC) optimization is used to guarantee that the proposed multidimensional Lorentzian SR (MDLSR) algorithm converges to the global minimum. Simulation results show the effectiveness of the MDLSR algorithm as well as its superiority over conventional SR methods. This paper presents a threshold-free maximum a posteriori (MAP) super resolution (SR) algorithm to reconstruct high resolution (HR) images with sharp edges. The joint distribution of directional edge images is modeled as a multidimensional Lorentzian (MDL) function and regarded as a new image prior. This model makes full use of gradient information to restrict the solution space and yields an edge-preserving SR algorithm. The Lorentzian parameters in the cost function are replaced with a tunable variable, and graduated nonconvexity (GNC) optimization is used to guarantee that the proposed multidimensional Lor- entzian SR (MDLSR) algorithm converges to the global minimum. Simulation results show the effectiveness of the MDLSR algorithm as well as its superiority over conventional SR methods.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1705-1713,共9页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project (Nos 60705012 and 60802025) supported by the National Natural Science Foundation of China
关键词 Edge preservation Multidimensional Lorentzian distribution (MDL) Super resolution THRESHOLD 超分辨率算法 最大后验概率 多维 洛仑兹 产量优势 成本函数 高分辨率 联合分布
  • 相关文献

参考文献11

  • 1Katherine Donaldson,Gregory K. Myers.Bayesian super-resolution of text in videowith a text-specific bimodal prior[J].International Journal of Document Analysis and Recognition (IJDAR) (-).2005(2-3)
  • 2Patanaviji, V,Tae-O-Sot, S,Jitapunkul, S.A Robust Iterative Super-resolution Reconstruction of Image Sequences Using a Lorentzian Bayesian Approach with Fast Affine Block-based Registration[].IEEE Int Conf on Image Processing.2007
  • 3Zhu, H,Lu, Y,Wu, Q.Super-resolution Image Restoration by Maximum Likelihood Method and Edge-oriented Diffusion[].Proceedings of SPIE the International Society for Optical Engineering.2007
  • 4Cheng, Y,Fang, X.Z,Yang, X.K.Edge-image-based approach for stable super-resolution reconstruction[].Optical Engineering.2007
  • 5El-Yamany, N.A,Papamichalis, P.E.Robust color image super-resolution: an adaptive M-estimation framework[].EURASIP J Image Video Process.2008
  • 6Haber, E,Tenorio, L.Learning regularization functionals: a supervised training approach[].Inv Probl.2003
  • 7Lettington, A.H,Hong, Q.H.Ringing artifact reduction for Poisson MAP superresolution algorithms[].IEEE Signal Processing Letters.1995
  • 8Lettington, A.H,Tzimopoulou, S,Rollason, M.P.Nonuniformity correction and restoration of passive millimeter-wave images[].Optical Engineering.2001
  • 9Nielsen,M.Graduated nonconvexity by functional focusing[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1997
  • 10Park, S.C,Park, M.K,Kang, M.G.Super-resolution image reconstruction: a technical overview[].IEEE Signal Process Mag.2003

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部