期刊文献+

新型仿生介入机器人推进方式

A new biomimetic propulsion method for interventional micro robot
下载PDF
导出
摘要 生物管腔中运行的微型机器人驱动机理研究是当前机器人研究的一个热点.为研究适合于充满液体的生物管腔的微型管道介入机器人,基于精子的运动原理,提出一种机器人游动推进方案,建立了游动机器人动力学模型,对该推进方式进行了仿真分析计算.为证明该推进方案的可行性,制作了一个大尺度的机器人实验样机模型.实验表明:实验的结果符合理论的规律,从而证明理论的正确,该推进方式是可行的. Nowadays, studies of the interventional micro robots have been hot topics in the field of medical device. The ultimate goal of researching the propulsion method for interventional micro robot is to reach currently inaccessible areas in imitative bio-pipes full of liquid. The properties of this propulsive mechanism based on the motion principle of spermatozoa were estimated by modeling the dynamics of the swimming methods. In order to validate the theoretical results, a scaled-up prototype of the swimming robot was fabricated and characterized. It is shown that the experimental result conforms to the rules and the new biomimetic propulsion method is feasible.
出处 《应用科技》 CAS 2009年第12期1-4,共4页 Applied Science and Technology
基金 国家自然科学基金资助项目(50605033)
关键词 介入机器人 仿生机器人 管腔 仿真分析 interventional micro robot biomimetic robots lumen simulation analysis
  • 相关文献

参考文献6

  • 1KOSA G, SHOHAM M, ZAAROOR M. Propulsion method for swimming microrobots [ J ]. IEEE Transactions on Robotics, 2007, 23( 1 ):137-150.
  • 2BEHKAM B, SITTI M. Design methodology for biomimetic propulsion of miniature swimming robots [ J ]. Transactions of the ASME Journal of Dynamic Systems Measurement and Control, 2006, 128 ( 1 ) : 36-43.
  • 3崔俊文,杭鲁滨,冯海涛.鞭毛细菌游动机理研究进展[J].微生物学通报,2007,34(5):991-995. 被引量:2
  • 4陈柏,顾大强,潘双夏,钟杰.仿蝌蚪与螺旋的泳动机器人系统的设计[J].机械工程学报,2005,41(10):88-92. 被引量:11
  • 5BRENNEN C, WINET H. Fluid mechanics of propulsion by cilia and flagella [ J ]. Annual Review of Fluid Mechanics, 1977, 9: 339-398.
  • 6BROKAW J. Flagellar hydrodynamics: a comparison between resistive-force theory and slender-body theory [ J ]. Biophysics Journal, 1979, 25 : 113-127.

二级参考文献27

  • 1Jager E W H, Inganas O, Lundstrom I. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science, 2000, 288(5475):2 335~2 338
  • 2Ishiyama K, Sendoh M, Arai K I. Magnetic micromachines for medical applications. Journal of Magnetism and Magnetic Materials, 2002, 242(4): 41~46
  • 3Guo S, Fukuda T, Asaka K. Fish-like underwater microrobot with 3 DOF. In: Proceeding of the 2002 IEEE International Conference on Robotics and Automation, Washington,DC, 2002:738~743
  • 4Laurent G, Piat E. Efficiency of swimming microrobots using ionic polymer metal composite acruators. In: Proceeding of the 2001 IEEE International Conference on Robotics and Automation, Seoul, 2001:3 914~3 919
  • 5Kerrebrock P A, Anderson J M, Parry J. Application requirements of artificial muscles for swimming. In: Proceeding of Electroactive Polymer, Actuators and Devices-Smart Structures and Materials 2001, Newport Beach, CA, 2001:364~374
  • 6Mei T, Chen Y, Fu G, et al. Wireless drive and control of a swimming microrobot. In: IEEE International Conference on Robotic and Automation, Washington, DC, 2002:1 131~1 136
  • 7Hoff K, Wassersug R J. Tadpole locomotion: axial movement and tail functions in a largely vertebraeless vertebrate.Amer. Zool., 2000, 40(1): 62~76
  • 8Mary Johnson,Mechanisms of Bacterial Motility.http://www.indstate.edu/thcme/micro/flagella.html.1996.
  • 9Sebastian Kohler.Basics for Biosystems of the Cell,assignment report,2004.pp.1-12.
  • 10Berg H C,Anderson R A.Nature,1973 Oct 19,245(5425):380-382.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部