期刊文献+

多线性Calderón-Zygmund算子的加权估计 被引量:2

原文传递
导出
摘要 本文考虑多线性Calderón-Zygmund算子的加权估计.通过证明适当的加权弱端点估计,并利用多线性内插定理和一个新的多线性外插引理,建立了多线性Calderón-Zygmund算子的一些加一般权的估计.此外还考虑了相应的交换子的加权估计.
作者 胡国恩
出处 《中国科学(A辑)》 CSCD 北大核心 2009年第12期1421-1434,共14页 Science in China(Series A)
基金 国家自然科学基金(批准号:10671210)资助项目
  • 相关文献

参考文献18

  • 1Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 212:315-331 (1975).
  • 2Coifman R R, Meyer Y. Nonlinear harmonic analysis, operator theory and PDE. In: Beijing Lectures in Harmonic Analysis (Beijing, 1984), Ann Math Stud 112. Princeton, N J: Princeton University Press, 1986, 3-45.
  • 3Grafakos L, Torres R H. Multilinear Calderdn-Zygmund theory. Adv Math, 165:124-164 (2002).
  • 4Grafakos L, Torres R H. Maximal operators and weighted norm inequalities for multilinear singular integrals, Indiana Univ Math J, 51:1261-1276 (2002).
  • 5Grafakos L, Kalton N. Multilinear Calderon-Zymunnd operators on Hardy spaces. Collect Math, 52: 169-- 179 (2001).
  • 6Grafakos L, Torres R H. On multilinear singular integrals of Calderon-Zygmund type. Publ Mat, Extra: 57-91 (2002).
  • 7Lerner A K, Ombrosi S, Perez C, et al. New maximal functions and multiple weights for the multilinear Calderon-Zygmund theory. Adv Math, 220:1222-1264 (2009).
  • 8Perez C, Torres R H. Sharp maximal function estimates for multilinear singular integrals. Contemp Math, 320:323-331 (2003).
  • 9Perez C. Weighted norm inequalities for singular integral operators. J London Math Soc, 4,9:296-308 (1994).
  • 10Perez C. Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J Fourier Anal Appl, 3:743-756 (1997).

同被引文献14

  • 1GRAFAKOS L, TORRES R. Muhilinear Calder6n-Zygmund theory[J]. Advances in Mathematics, 2002, 165 (1).. 124- 164.
  • 2YABUTA k. Generalizations of Calder6n-Zygmund operators [J ]. Studia Math Ematica, 1985, 82(1 ) : 17-31. .
  • 3MALDONADO D, NAIBO V. Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity [J ]. Journal of Fourier Analysis and Applications, 2009, 15 (2) : 218-261.
  • 4LU Guozhen, ZHANG Pu. Muhilinear Calder6n-Zygmund operators with kernels of Dini's type and applications [J]. Nonlinear Analysis:Theory, Methods and Applications, 2014, 107(1):92-117.
  • 5COIFMAN R R. Distribution function inequalities for singular integrals[J]. Proceedings of the National Academy of Sciences of the United States of America, 1972, 69 (10) :2838-2839.
  • 6PIREZ C. Weighted norm inequalities for singular integral operators[J]. Journal of the London Mathematical Society, 1994, 49(2) :296-308.
  • 7GRAFAKOS L, KALTON N. Some remarks on muhilinear maps and interpolation[Jl. Mathematische Annalen, 2001, 319(1):151-180.
  • 8周疆,江寅生,马柏林,李书宏,陈金阳.多线性Calderón-Zygmund在Herz-Morrey空间上的有界性[J].兰州大学学报(自然科学版),2009,45(1):83-87. 被引量:2
  • 9HUANG Ai-wu XU Jing-shi.Multilinear singular integrals and commutators in variable exponent Lebesgue spaces[J].Applied Mathematics(A Journal of Chinese Universities),2010,25(1):69-77. 被引量:24
  • 10Hu Guoen,Zhu Yueping.WEIGHTED NORM INEQUALITIES FOR THE COMMUTATORS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS[J].Acta Mathematica Scientia,2011,31(3):749-764. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部